2020 Volume 10 Issue 4
Article Contents

Mohammed Abdou, Abdelkrim Soliman, Mohammed Abdel-Aty. ANALYTICAL RESULTS FOR QUADRATIC INTEGRAL EQUATIONS WITH PHASE-CLAG TERM[J]. Journal of Applied Analysis & Computation, 2020, 10(4): 1588-1598. doi: 10.11948/20190279
Citation: Mohammed Abdou, Abdelkrim Soliman, Mohammed Abdel-Aty. ANALYTICAL RESULTS FOR QUADRATIC INTEGRAL EQUATIONS WITH PHASE-CLAG TERM[J]. Journal of Applied Analysis & Computation, 2020, 10(4): 1588-1598. doi: 10.11948/20190279

ANALYTICAL RESULTS FOR QUADRATIC INTEGRAL EQUATIONS WITH PHASE-CLAG TERM

  • In the present paper, we are concerning with a quadratic integral equation with phase-lag term. In the following pages, sufficient conditions are given for the existence of positive continuous solution to quadratic integral equations. The method used here depends on both Tychonoff fixed point principle and Arzelà-Ascoli theorem. A concrete example illustrating the mentioned applicability is also included.
    MSC: 45G10, 46B50, 47H10
  • 加载中
  • [1] M. A. Abdou, M. E. Nasr and M. A. Abdel-Aty, Study of the Normality and Continuity for the Mixed Integral Equations with Phase-lag Term, Inter. J. of Math. Analysis, 2017, 11, 787-799. DOI: 10.12988/ijma.2017.7798.

    CrossRef Google Scholar

    [2] M. A. Abdou, M. E. Nasr and M. A. Abdel-Aty, A study of normality and continuity for mixed integral equations, J. of Fixed Point Theory Appl., 2018, 20(1). DOI: 10.1007/s11784-018-0490-0.

    CrossRef Google Scholar

    [3] R. P. Agarwal and D. O'Regan, Singular Volterra integral equations, Appl. Math. Lett., 2000, 13, 115-120.

    Google Scholar

    [4] R. P. Agarwal and D. O'Regan, Fixed point theory and applications, Cambridge University Press, 2004, 141.

    Google Scholar

    [5] R. P. Agarwal, M. Benchohra and D. Seba, On the application of measure of noncompactness to the existence of solutions for fractional differential equations, Results Math., 2009, 55(3-4), 221-230. doi: 10.1007/s00025-009-0434-5

    CrossRef Google Scholar

    [6] A. Aghajani, J. Banaś and N. Sabzali, Some generalizations of Darbo fixed point theorem and applications, Bull. Belg. Math. Soc. Simon Stevin, 2013, 20(2), 345-358. doi: 10.36045/bbms/1369316549

    CrossRef Google Scholar

    [7] A. Aghajani, J. Banaś andY. Jalilian, Existence of solution for a class of nonlinear Volterra singular integral equations, Comp. Math. Appl., 2011, 62(3), 1215-1227. doi: 10.1016/j.camwa.2011.03.049

    CrossRef Google Scholar

    [8] A. Aghajani and N. Sabzali, A coupled fixed point theorem for condensing operators with application to system of integral equations, J. Nonlinear Convex Anal., 2014, 15(5), 941-952.

    Google Scholar

    [9] A. Akbarzadeh, J. Fu and Z. Chen, Three-phase-lag heat conduction in a functionally graded hollow cylinder, Trans. Can. Soc. Mech. Eng., 2014, 38(1), 155-171. DOI: 10.1139/tcsme-2014-0010.

    CrossRef Google Scholar

    [10] F. F. Bonsall and K. B. Vedak, Lectures on some fixed point theorems of functional analysis, Bombay, Tata Institute of Fundamental Research, 1962, 26.

    Google Scholar

    [11] S. Chiriţă, On the time differential dual-phase-lag thermoelastic model, Meccanica, 2017, 52(1-2), 349-361. DOI: 10.1007/s11012-016-0414-2.

    CrossRef Google Scholar

    [12] R. F. Curtain and A. J. Pritchard, Functional Analysis in Modern Applied Mathematics, Academic press, 1977, 132.

    Google Scholar

    [13] S. Chiriţă, M. Ciarletta and V. Tibullo, On the thermomechanical consistency of the time differential dual-phase-lag models of heat conduction, International Journal of Heat and Mass Transfer, 2017, 114, 277-285. DOI: 10.1016/j.ijheatmasstransfer.2017.06.071.

    CrossRef Google Scholar

    [14] X. Hu and J. Yan, The global attractively and asymptotic stability of solution of a nonlinear integral equation, J. Math. Anal. Appl., 2006, 321(1), 147-156.

    Google Scholar

    [15] A. N. Kolmogorov and S. V. fomin, Introduction real Analysis, Dover Publ. Inc., 1975.

    Google Scholar

    [16] R. S. LAY, Convex Set and Their Applications, Courier Corporation, University Cleveland, New York, 2007.

    Google Scholar

    [17] Z. Liu and S. Kang, Existence and asymptotic stability of solutions to functional-integral equation, Taiwan J. Math., 2007, 11(1), 187-196. doi: 10.11650/twjm/1500404645

    CrossRef Google Scholar

    [18] L. Liu, F. Guo, C. Wu and Y. Wu, Existence theorems of global solutions for nonlinear Volterra type integral equations in Banach spaces, J. Math. Anal. Appl., 2005, 309(2), 638-649.

    Google Scholar

    [19] S. Micula, On some iterative numerical methods for a Volterra functional integral equation of the second kind, J. of Fixed Point Theory Appl., 2017, 19(3), 1815-1824. DOI: 10.1007/s11784-016-0336-6.

    CrossRef Google Scholar

    [20] S. Micula, An iterative numerical method for Fredholm-Volterra integral equations of the second kind, Appl. Math. Comput., 2015, 270(1), 935-942. DOI: 10.1016/j.amc.2015.08.110.

    CrossRef Google Scholar

    [21] M. Mursaleen and S. A. Mohiuddine, Applications of measures of noncompactness to the infinite system of differential equations in $l_{p}$ spaces, Nonlinear Analysis: Theory, Methods & Applications, 2012, 75(4), 2111-2115.

    $l_{p}$ spaces" target="_blank">Google Scholar

    [22] M. E. Nasr and M. A. Abdel-Aty, Analytical discussion for the mixed integral equations, J. of Fixed Point Theory Appl., 2018, 20(3). DOI: 10.1007/s11784-018-0589-3.

    Google Scholar

    [23] D. Y. Tzou, Macro-to microscale heat transfer: the lagging behavior, John Wiley & Sons, 2014.

    Google Scholar

Article Metrics

Article views(2225) PDF downloads(620) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint