[1]
|
M. A. Abdou, M. E. Nasr and M. A. Abdel-Aty, Study of the Normality and Continuity for the Mixed Integral Equations with Phase-lag Term, Inter. J. of Math. Analysis, 2017, 11, 787-799. DOI: 10.12988/ijma.2017.7798.
CrossRef Google Scholar
|
[2]
|
M. A. Abdou, M. E. Nasr and M. A. Abdel-Aty, A study of normality and continuity for mixed integral equations, J. of Fixed Point Theory Appl., 2018, 20(1). DOI: 10.1007/s11784-018-0490-0.
CrossRef Google Scholar
|
[3]
|
R. P. Agarwal and D. O'Regan, Singular Volterra integral equations, Appl. Math. Lett., 2000, 13, 115-120.
Google Scholar
|
[4]
|
R. P. Agarwal and D. O'Regan, Fixed point theory and applications, Cambridge University Press, 2004, 141.
Google Scholar
|
[5]
|
R. P. Agarwal, M. Benchohra and D. Seba, On the application of measure of noncompactness to the existence of solutions for fractional differential equations, Results Math., 2009, 55(3-4), 221-230. doi: 10.1007/s00025-009-0434-5
CrossRef Google Scholar
|
[6]
|
A. Aghajani, J. Banaś and N. Sabzali, Some generalizations of Darbo fixed point theorem and applications, Bull. Belg. Math. Soc. Simon Stevin, 2013, 20(2), 345-358. doi: 10.36045/bbms/1369316549
CrossRef Google Scholar
|
[7]
|
A. Aghajani, J. Banaś andY. Jalilian, Existence of solution for a class of nonlinear Volterra singular integral equations, Comp. Math. Appl., 2011, 62(3), 1215-1227. doi: 10.1016/j.camwa.2011.03.049
CrossRef Google Scholar
|
[8]
|
A. Aghajani and N. Sabzali, A coupled fixed point theorem for condensing operators with application to system of integral equations, J. Nonlinear Convex Anal., 2014, 15(5), 941-952.
Google Scholar
|
[9]
|
A. Akbarzadeh, J. Fu and Z. Chen, Three-phase-lag heat conduction in a functionally graded hollow cylinder, Trans. Can. Soc. Mech. Eng., 2014, 38(1), 155-171. DOI: 10.1139/tcsme-2014-0010.
CrossRef Google Scholar
|
[10]
|
F. F. Bonsall and K. B. Vedak, Lectures on some fixed point theorems of functional analysis, Bombay, Tata Institute of Fundamental Research, 1962, 26.
Google Scholar
|
[11]
|
S. Chiriţă, On the time differential dual-phase-lag thermoelastic model, Meccanica, 2017, 52(1-2), 349-361. DOI: 10.1007/s11012-016-0414-2.
CrossRef Google Scholar
|
[12]
|
R. F. Curtain and A. J. Pritchard, Functional Analysis in Modern Applied Mathematics, Academic press, 1977, 132.
Google Scholar
|
[13]
|
S. Chiriţă, M. Ciarletta and V. Tibullo, On the thermomechanical consistency of the time differential dual-phase-lag models of heat conduction, International Journal of Heat and Mass Transfer, 2017, 114, 277-285. DOI: 10.1016/j.ijheatmasstransfer.2017.06.071.
CrossRef Google Scholar
|
[14]
|
X. Hu and J. Yan, The global attractively and asymptotic stability of solution of a nonlinear integral equation, J. Math. Anal. Appl., 2006, 321(1), 147-156.
Google Scholar
|
[15]
|
A. N. Kolmogorov and S. V. fomin, Introduction real Analysis, Dover Publ. Inc., 1975.
Google Scholar
|
[16]
|
R. S. LAY, Convex Set and Their Applications, Courier Corporation, University Cleveland, New York, 2007.
Google Scholar
|
[17]
|
Z. Liu and S. Kang, Existence and asymptotic stability of solutions to functional-integral equation, Taiwan J. Math., 2007, 11(1), 187-196. doi: 10.11650/twjm/1500404645
CrossRef Google Scholar
|
[18]
|
L. Liu, F. Guo, C. Wu and Y. Wu, Existence theorems of global solutions for nonlinear Volterra type integral equations in Banach spaces, J. Math. Anal. Appl., 2005, 309(2), 638-649.
Google Scholar
|
[19]
|
S. Micula, On some iterative numerical methods for a Volterra functional integral equation of the second kind, J. of Fixed Point Theory Appl., 2017, 19(3), 1815-1824. DOI: 10.1007/s11784-016-0336-6.
CrossRef Google Scholar
|
[20]
|
S. Micula, An iterative numerical method for Fredholm-Volterra integral equations of the second kind, Appl. Math. Comput., 2015, 270(1), 935-942. DOI: 10.1016/j.amc.2015.08.110.
CrossRef Google Scholar
|
[21]
|
M. Mursaleen and S. A. Mohiuddine, Applications of measures of noncompactness to the infinite system of differential equations in $l_{p}$ spaces, Nonlinear Analysis: Theory, Methods & Applications, 2012, 75(4), 2111-2115.
$l_{p}$ spaces" target="_blank">Google Scholar
|
[22]
|
M. E. Nasr and M. A. Abdel-Aty, Analytical discussion for the mixed integral equations, J. of Fixed Point Theory Appl., 2018, 20(3). DOI: 10.1007/s11784-018-0589-3.
Google Scholar
|
[23]
|
D. Y. Tzou, Macro-to microscale heat transfer: the lagging behavior, John Wiley & Sons, 2014.
Google Scholar
|