Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 19, 2018

On sinc quadrature approximations of fractional powers of regularly accretive operators

  • Andrea Bonito , Wenyu Lei EMAIL logo and Joseph E. Pasciak

Abstract

We consider the finite element approximation of fractional powers of regularly accretive operators via the Dunford–Taylor integral approach. We use a sinc quadrature scheme to approximate the Balakrishnan representation of the negative powers of the operator as well as its finite element approximation. We improve the exponentially convergent error estimates from [A. Bonito and J. E. Pasciak, IMA J. Numer. Anal., 37 (2016), No. 3, 1245–1273] by reducing the regularity required on the data. Numerical experiments illustrating the new theory are provided.

JEL Classification: 65N30; 35S15; 65N15; 65R20; 65N12
  1. Funding: The first and second authors are partially supported by NSF grant DMS-1254618.

Acknowledgment

The authors would like to thank R. H. Nochetto for pointing out the possible suboptimality in [10], thereby prompting the current analysis.

References

[1] G. Acosta and J. P. Borthagaray, A fractional Laplace equation: regularity of solutions and finite element approximations, SIAM J. Numer. Anal. 55 (2017), No. 2, 472–495.10.1137/15M1033952Search in Google Scholar

[2] M. S. Agranovich and A. M. Selitskii, Fractional powers of operators corresponding to coercive problems in Lipschitz domains, Funct. Anal. Appl. 47 (2013), No. 2, 83–95.10.1007/s10688-013-0013-0Search in Google Scholar

[3] H. Antil, J. Pfefferer, and S. Rogovs, Fractional operators with inhomogeneous boundary conditions: analysis, control, and discretization, Preprint arXiv:1703.05256 (2017).10.4310/CMS.2018.v16.n5.a11Search in Google Scholar

[4] A. V. Balakrishnan, Fractional powers of closed operators and the semigroups generated by them, Pacific J. Math. 10 (1960), 419–437.10.2140/pjm.1960.10.419Search in Google Scholar

[5] L. Banjai, J. M. Melenk, R. H. Nochetto, E. Otarola, A. J. Salgado, and C. Schwab, Tensor FEM for spectral fractional diffusion, Preprint arXiv:1707.07367 (2017).10.1007/s10208-018-9402-3Search in Google Scholar

[6] R. E. Bank and H. Yserentant, On the H1 -stability of the L2-projection onto finite element spaces, Numer. Math. 126 (2014), No. 2, 361–381.10.1007/s00211-013-0562-4Search in Google Scholar

[7] A. Bonito, J. P. Borthagaray, R. H. Nochetto, E. Otarola, and A. J. Salgado, Numerical methods for fractional diffusion, Preprint arXiv:1707.01566 (2017).10.1007/s00791-018-0289-ySearch in Google Scholar

[8] A. Bonito, W. Lei, and J. E. Pasciak, Numerical approximation of the integral fractional Laplacian, Preprint arXiv:1707.04290 (2017).10.1007/s00211-019-01025-xSearch in Google Scholar

[9] A. Bonito and J. E. Pasciak, Numerical approximation of fractional powers of elliptic operators, Math. Comp. 84 (2015), No. 295, 2083–2110.10.1090/S0025-5718-2015-02937-8Search in Google Scholar

[10] A. Bonito and J. E. Pasciak, Numerical approximation of fractional powers of regularly accretive operators, IMA J. Numer. Anal. 37 (2017), No. 3,1245–1273.10.1093/imanum/drw042Search in Google Scholar

[11] J. H. Bramble, J. E. Pasciak, and O. Steinbach, On the stability of the L2 projection in H1(Ω), Math. Comp. 71 (2002), No. 237, 147–156.10.1090/S0025-5718-01-01314-XSearch in Google Scholar

[12] M. Crouzeix and V. Thomée, The stability in Lp and Wp1 of the L2-projection onto finite element function spaces, Math. Comp. 48 (1987), No.178, 521–532.Search in Google Scholar

[13] M. D’Elia and M. Gunzburger, The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator, Comput. Math. Appl. 66 (2013), No. 7,1245–1260.10.1016/j.camwa.2013.07.022Search in Google Scholar

[14] A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Applied Mathematical Sciences 159, Springer-Verlag, New York, 2004.10.1007/978-1-4757-4355-5Search in Google Scholar

[15] M. Ilic, F. Liu, I. Turner, and V. Anh, Numerical approximation of a fractional-in-space diffusion equation, I, Fract. Calc. Appl. Anal. 8 (2005), No. 3, 323–341.Search in Google Scholar

[16] M. Ilic, F. Liu, I. Turner, and V. Anh, Numerical approximation of a fractional-in-space diffusion equation, II. With nonhomogeneous boundary conditions, Fract. Calc. Appl. Anal. 9 (2006), No. 4, 333–349.Search in Google Scholar

[17] T. Kato, Fractional powers of dissipative operators, J. Math. Soc. Japan13 (1961), 246–274.10.2969/jmsj/01330246Search in Google Scholar

[18] A. Lunardi, Interpolation Theory, Edizioni della Normale, Pisa, 2009.Search in Google Scholar

[19] J. Lund and K. L. Bowers, Sinc Methods for Quadrature and Differential Equations, SIAM, Philadelphia, PA, 1992.10.1137/1.9781611971637Search in Google Scholar

[20] D. Meidner, J. Pfefferer, K. Schürholz, and B. Vexler, hp-finite elements for fractional diffusion, Preprint arXiv:1706.04066 (2017).10.1137/17M1135517Search in Google Scholar

[21] R. H. Nochetto, E. Otárola, and A. J. Salgado, A PDE approach to fractional diffusion in general domains: a priori error analysis, Found. Comput. Math. 15 (2015), No. 3, 733–791.10.1007/s10208-014-9208-xSearch in Google Scholar

[22] Q. Yang, I. Turner, F. Liu, and M. Ilić, Novel numerical methods for solving the time–space fractional diffusion equation in two dimensions, SIAM J. Sci. Comput. 33 (2011), No. 3, 1159–1180.10.1137/100800634Search in Google Scholar

Received: 2017-09-18
Revised: 2018-02-01
Accepted: 2018-03-14
Published Online: 2018-03-19
Published in Print: 2019-06-26

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.11.2024 from https://www.degruyter.com/document/doi/10.1515/jnma-2017-0116/html
Scroll to top button