Logo des Repositoriums
 
Textdokument

Fast Approximated Nearest Neighbor Joins For Relational Database Systems

Lade...
Vorschaubild

Volltext URI

Dokumententyp

Zusatzinformation

Datum

2019

Zeitschriftentitel

ISSN der Zeitschrift

Bandtitel

Quelle

Verlag

Gesellschaft für Informatik, Bonn

Zusammenfassung

K nearest neighbor search (kNN-Search) is a universal data processing technique and a fundamental operation for word embeddings trained by word2vec or related approaches. The benefits of operations on dense vectors like word embeddings for analytical functionalities of RDBMSs motivate an integration of kNN-Joins. However, kNN-Search, as well as kNN-Joins, have barely been integrated into relational database systems so far. In this paper, we develop an index structure for approximated kNN-Joins working well on high-dimensional data and provide an integration into PostgreSQL. The novel index structure is efficient for different cardinalities of the involved join partners. An evaluation of the system based on applications on word embeddings shows the benefits of such an integrated kNN-Join operation and the performance of the proposed approach.

Beschreibung

Günther, Michael; Thiele, Maik; Lehner, Wolfgang (2019): Fast Approximated Nearest Neighbor Joins For Relational Database Systems. BTW 2019. DOI: 10.18420/btw2019-15. Gesellschaft für Informatik, Bonn. PISSN: 1617-5468. ISBN: 978-3-88579-683-1. pp. 225-244. Wissenschaftliche Beiträge. Rostock. 4.-8. März 2019

Zitierform

Tags