Comparison of Feedforward Perceptron Network with LSTM for Solar Cell Radiation Prediction
Abstract
:1. Introduction
1.1. Background
1.2. Literature Review
1.3. The Proposed Study
2. Materials and Methods
2.1. Dataset
2.2. Deep Neural Network Approaches
2.2.1. Conventional Deep ANN/Multilayer Perceptron (MLP)
2.2.2. Recurrent Neural Network (RNN)
2.2.3. Long-Short-Term Memory (LSTM)
2.3. Activation Functions
3. Experimental Design
3.1. Dataset Description
3.2. Description of the ANN Model
3.3. Description of the LSTM Model
3.4. Error Measures
4. Results and Discussion
5. Conclusions and Limitations
Author Contributions
Funding
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Husain, A.A.; Hasan, W.Z.W.; Shafie, S.; Hamidon, M.N.; Pandey, S.S. A review of transparent solar photovoltaic technologies. Renew. Sustain. Energy Rev. 2018, 94, 779–791. [Google Scholar] [CrossRef]
- Shahsavari, A.; Akbari, M. Potential of solar energy in developing countries for reducing energy-related emissions. Renew. Sustain. Energy Rev. 2018, 90, 275–291. [Google Scholar] [CrossRef]
- Wang, Z.; Song, H.; Liu, H.; Ye, J. Coupling of solar energy and thermal energy for carbon dioxide reduction: Status and prospects. Angew. Chem. Int. Ed. 2020, 59, 8016–8035. [Google Scholar] [CrossRef]
- Zhang, Y.; Jing, R.; Yanru, P.; Wang, P. Solar energy potential assessment: A framework to integrate geographic, technological, and economic indices for a potential analysis. Renew. Energy 2020, 149, 577–586. [Google Scholar] [CrossRef]
- Rabaia, M.K.H.; Abdelkareem, M.A.; Sayed, E.T.; Elsaid, K.; Chae, K.; Wilberforce, T.; Olabi, A.G. Environmental impacts of solar energy systems: A review. Sci. Total Environ. 2021, 754, 141989. [Google Scholar] [CrossRef]
- Li, J.; Huang, J. The expansion of China’s solar energy: Challenges and policy options. Renew. Sustain. Energy Rev. 2020, 132, 110002. [Google Scholar] [CrossRef]
- Grubler, A.; Wilson, C.; Bento, N.; Boza-Kiss, B.; Krey, V.; McCollum, D.L.; Rao, N.D.; Riahi, K.; Rogelj, J.; De Stercke, S.; et al. A low energy demand scenario for meeting the 1.5 C target and sustainable development goals without negative emission technologies. Nat. Energy 2018, 3, 515–527. [Google Scholar] [CrossRef]
- Shamshirband, S.; Rabczuk, T.; Chau, K.W. A survey of deep learning techniques: Application in wind and solar energy resources. IEEE Access 2019, 7, 164650–164666. [Google Scholar] [CrossRef]
- Bildirici, M.E.; Gökmenoğlu, S.M. Environmental pollution, hydropower energy consumption and economic growth: Evidence from G7 countries. Renew. Sustain. Energy Rev. 2017, 75, 68–85. [Google Scholar] [CrossRef]
- Franco, S.; Mandla, V.R.; Rao, K.R.M. Urbanization, energy consumption and emissions in the Indian context A review. Renew. Sustain. Energy Rev. 2017, 71, 898–907. [Google Scholar] [CrossRef]
- Jebli, M.B.; Youssef, S.B. The role of renewable energy and agriculture in reducing CO2 emissions: Evidence for North Africa countries. Ecol. Indic. 2017, 74, 295–301. [Google Scholar] [CrossRef] [Green Version]
- Nabavi-Pelesaraei, A.; Hosseinzadeh-Bandbafha, H.; Qasemi-Kordkheili, P.; Kouchaki-Penchah, H.; Riahi-Dorcheh, F. Applying optimization techniques to improve of energy efficiency and GHG (greenhouse gas) emissions of wheat production. Energy 2016, 103, 672–678. [Google Scholar] [CrossRef]
- Jebli, I.; Belouadha, F.Z.; Kabbaj, M.I.; Tilioua, A. Prediction of solar energy guided by pearson correlation using machine learning. Energy 2021, 224, 120109. [Google Scholar] [CrossRef]
- Smil, V. Energy and Civilization: A History; MIT Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Shezan, S.; Julai, S.; Kibria, M.; Ullah, K.; Saidur, R.; Chong, W.T.; Akikur, R. Performance analysis of an off-grid wind-PV (photovoltaic)-diesel-battery hybrid energy system feasible for remote areas. J. Clean. Prod. 2016, 125, 121–132. [Google Scholar] [CrossRef]
- Antonanzas, J.; Osorio, N.; Escobar, R.; Urraca, R.; Martinez-de-Pison, F.J.; Antonanzas-Torres, F. Review of photovoltaic power forecasting. Sol. Energy 2016, 136, 78–111. [Google Scholar] [CrossRef]
- Ahmad, M.J.; Tiwari, G.N. Solar radiation models—A review. Int. J. Energy Res. 2011, 35, 271–290. [Google Scholar] [CrossRef]
- Pandey, A.K.; Tyagi, V.; Selvaraj, J.A.; Rahim, N.; Tyagi, S. Recent advances in solar photovoltaic systems for emerging trends and advanced applications. Renew. Sustain. Energy Rev. 2016, 53, 859–884. [Google Scholar] [CrossRef]
- Wang, F.; Mi, Z.; Su, S.; Zhao, H. Short-Term Solar Irradiance Forecasting Model Based on Artificial Neural Network Using Statistical Feature Parameters. Energies 2012, 5, 1355–1370. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.; Chan, L.-C.; Shu, L.; Tsui, K.-L. Real-time prediction models for output power and efficiency of grid-connected solar photovoltaic systems. Appl. Energy 2012, 93, 319–326. [Google Scholar] [CrossRef]
- Malvoni, M.; Leggieri, A.; Maggiotto, G.; Congedo, P.; de Giorgi, M.G. Long term performance, losses and efficiency analysis of a 960 kW P photovoltaic system in the Mediterranean climate. Energy Convers. Manag. 2017, 145, 169–181. [Google Scholar] [CrossRef]
- Ghazi, S.; Ip, K. The effect of weather conditions on the efficiency of PV panels in the southeast of UK. Renew. Energy 2014, 69, 50–59. [Google Scholar] [CrossRef]
- Salimi, H.; Ashtiani, H.A.D.; Lavasani, A.M.; Fazaeli, R. Experimental analysis and modeling of weather condition effects on photovoltaic systems’ performance: Tehran case study. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 7, 1–13. [Google Scholar] [CrossRef]
- Hachicha, A.A.; Al-Sawafta, I.; Said, Z. Impact of dust on the performance of solar photovoltaic (PV) systems under United Arab Emirates weather conditions. Renew. Energy 2019, 141, 287–297. [Google Scholar] [CrossRef]
- Mellit, A.; Pavan, A.M.; Lughi, V. Short-term forecasting of power production in a large-scale photovoltaic plant. Sol. Energy 2014, 105, 401–413. [Google Scholar] [CrossRef]
- Ogliari, E.; Dolara, A.; Manzolini, G.; Leva, S. Physical and hybrid methods comparison for the day ahead PV output power forecast. Renew. Energy 2017, 113, 11–21. [Google Scholar] [CrossRef]
- Benghanem, M.; Mellit, A.; Alamri, S. ANN-based modelling and estimation of daily global solar radiation data: A case study. Energy Convers. Manag. 2009, 50, 1644–1655. [Google Scholar] [CrossRef]
- Mellit, A.; Pavan, A.M. A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy. Sol. Energy 2010, 84, 807–821. [Google Scholar] [CrossRef]
- Voyant, C.; Muselli, M.; Paoli, C.; Nivet, M.-L. Numerical weather prediction (NWP) and hybrid ARMA/ANN model to predict global radiation. Energy 2012, 39, 341–355. [Google Scholar] [CrossRef] [Green Version]
- Sözen, A.; Arcaklioğlu, E.; Özalp, M. Estimation of solar potential in Turkey by artificial neural networks using meteorological and geographical data. Energy Convers. Manag. 2004, 45, 3033–3052. [Google Scholar] [CrossRef]
- Mellit, A.; Shaari, S. Recurrent neural network-based forecasting of the daily electricity generation of a Photovoltaic power system. Ecol. Veh. Renew. Energy (EVER) 2009, 26–29. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.533.9274&rep=rep1&type=pdf (accessed on 1 September 2019).
- de Araujo, J.M.S. Performance comparison of solar radiation forecasting between WRF and LSTM in Gifu, Japan. Environ. Res. Commun. 2020, 2, 045002. [Google Scholar] [CrossRef]
- Alzahrani, A.; Shamsi, P.; Dagli, C.; Ferdowsi, M. Solar Irradiance Forecasting Using Deep Neural Networks. Procedia Comput. Sci. 2017, 114, 304–313. [Google Scholar] [CrossRef]
- Rai, A.; Shrivastava, A.; Jana, K.C. A CNN-BiLSTM based deep learning model for mid-term solar radiation prediction. Int. Trans. Electr. Energy Syst. 2020, 31, e12664. [Google Scholar] [CrossRef]
- Yousif, J.H.; Kazem, H.A.; Alattar, N.N.; Elhassan, I.I. A comparison study based on artificial neural network for assessing PV/T solar energy production. Case Stud. Therm. Eng. 2019, 13, 100407. [Google Scholar] [CrossRef]
- Jung, Y.; Jung, J.; Kim, B.; Han, S.U. Long short-term memory recurrent neural network for model in temporal patterns in long-term power forecasting for solar PV facilities: Case study of South Korea. J. Clean. Prod. 2020, 250, 119476. [Google Scholar] [CrossRef]
- Mishra, M.; Dash, P.B.; Nayak, J.; Naik, B.; Swain, S.K. Deep learning and wavelet transform integrated approach for short-term solar PV power prediction. Measurement 2020, 166, 108250. [Google Scholar] [CrossRef]
- Ghimire, S.; Deo, R.C.; Raj, N.; Mi, J. Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms. Appl. Energy 2019, 253, 113541. [Google Scholar] [CrossRef]
- Lee, D.; Kim, K. Recurrent Neural Network-Based Hourly Prediction of Photovoltaic Power Output Using Meteorological Information. Energies 2019, 12, 215. [Google Scholar] [CrossRef] [Green Version]
- Pang, Z.; Niu, F.; O’Neill, Z. Solar radiation prediction using recurrent neural network and artificial neural network: A case study with comparisons. Renew. Energy 2020, 156, 279–289. [Google Scholar] [CrossRef]
- Gensler, A.; Henze, J.; Sick, B.; Raabe, N. Deep Learning for solar power forecasting—An approach using AutoEncoder and LSTM Neural Networks. In Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 9–12 October 2016; pp. 002858–002865. [Google Scholar]
- Bakirci, K. Models of solar radiation with hours of bright sunshine: A review. Renew. Sustain. Energy Rev. 2009, 13, 2580–2588. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, M.; Yu, R.; Wang, T. Research on Simulation and State Prediction of Nuclear Power System Based on LSTM Neural Network. Sci. Technol. Nucl. Install. 2021, 2021, 8839867. [Google Scholar] [CrossRef]
- Zhou, N.; Ren, N.; Zhou, J.; Huang, C. Prediction of remaining mileage of hydrogen energy vehicles based on LSTM. In Proceedings of the 2021 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE), Changsha, China, 26–28 March 2021; pp. 749–753. [Google Scholar]
- Turkish State Meteorological Service Official Web Sites. Available online: https://mgm.gov.tr/eng/forecast-cities.aspx (accessed on 1 September 2019).
- Rosenblatt, F. The Perceptron: A Perceiving and Recognizing Automaton (Project PARA); Report No. 85-460-1; Cornell Aeronautical Laboratory: New York, NY, USA, 1957. [Google Scholar]
- Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. In Proceedings of the NIPS 2014 Workshop on Deep Learning, Cornell University, New York, NY, USA, 10 December 2014. [Google Scholar]
- Lipton, Z.C.; Berkowitz, J.; Elkan, C. A Critical Review of Recurrent Neural Networks for Sequence Learning. arXiv 2015, arXiv:1506.00019. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Ghaderi, A.; Sanandaji, B.M.; Ghaderi, F. Deep Forecast: Deep Learning-based Spatio-Temporal Forecasting. arXiv 2017, arXiv:1707.08110. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Lee, H.-Y. Deep Learning Neural Network with Memory (1)—PPT Video Online Download. Available online: https://slideplayer.com/slide/7478657/ (accessed on 2 September 2019).
- Ramachandran, P.; Zoph, B.; Le, Q.V. Searching for Activation Functions. arXiv 2017, arXiv:1710.05941. [Google Scholar]
- Nwankpa, C.; Ijomah, W.; Gachagan, A.; Marshall, S. Activation functions: Comparison of trends in practice and research for deep learning. arXiv 2018, arXiv:1811.03378. [Google Scholar]
- Sibi, P.; Jones, S.A.; Siddarth, P. Analysis of different activation functions using back propagation neural networks. J. Theor. Appl. Inf. Technol. 2013, 47, 5. [Google Scholar]
- Sharma, S. Activation functions in neural networks. Towards Data Sci. 2017, 6, 310–316. [Google Scholar] [CrossRef]
- Karlik, B.; Olgac, A.V. Performance analysis of various activation functions in generalized MLP architectures of neural networks. Int. J. Artif. Intell. Expert Syst. 2011, 1, 111–122. [Google Scholar]
- Cheng, J.; Dong, L.; Lapata, M. Long Short-Term Memory-Networks for Machine Reading. arXiv 2016, arXiv:1601.06733. [Google Scholar]
- Zurada, J.M. Introduction to Artificial Neural Systems; West: Eagan, MN, USA, 1992. [Google Scholar]
- Ağbulut, U.; Gürel, A.E.; Biçen, Y. Prediction of daily global solar radiation using different machine learning algorithms: Evaluation and comparison. Renew. Sustain. Energy Rev. 2021, 135, 110114. [Google Scholar] [CrossRef]
Authors and Reference | Case Study | Research Objective | Data | Models Used | Performance of Models |
---|---|---|---|---|---|
A. Mellit et al. [28] | Trieste, Italy | Estimate the amount of solar radiation for 24h using grid-connected photovoltaic plants (GCPV). | From July 1st 2008 to May 23rd 2009 for solar radiation, from November 23rd 2009 to January 24th 2010 for air temperature data. | ANN | The correlation coefficient was 98–99% for sunny days and 94–96% for cloudy days. |
C. Voyant et al. [29] | Mediterranean Sea: Ajaccio, Bastia, Montpellier, Marseille, and Nice | Estimate the global solar radiation with two models. | Data on an hourly basis from October 2002 to December 2008 and from French meteorological organization. |
|
|
A. Sozen et al. [30] | 17 different cities in Turkey |
| The data were collected from 17 meteorological stations between 2000 and 2002. | ANNs |
|
A. Mellit et al. [31] | In Tahifet, south Algeria | They presented an application of an RNN-based approach to estimate the daily electricity generation of a photovoltaic power system (PVPS). | The measured weather data and the output of electrical signals (voltage and current) were recorded at the PVPS station in Algeria from 1992 to 1997. | ANN and RNN |
|
J. M. S. de Araujo [32] | Gifu, Japan | For hourly solar radiation prediction. |
| LSTMWRF (weather research and forecasting) |
|
A. Alzahrani et al. [33] | Canada | Estimate solar irradiance using a deep neural network. | The data were recorded for four days, from Canada’s natural sources. |
| RMSE:
|
A. Rai et al. [34] | Three different geographical regions in different climatic zones. | For midterm solar radiation estimation. | The data came from three different geographical regions in different climatic zones between 2014 and 2015 years. |
| For CNN-BiLSTM
|
J. H. Yousif et al. [35] | Many different locations around the world. | Some different ANN techniques to estimate the photovoltaic thermal (PV/T) energy. | Data were taken from 2008–2017 for locations with different latitudes and climates. | Some models:
| They gave error results such as MAPE, MSE, RMSE, MBE, MPE, and R2. |
Y. Jung et al. [36] | South Korea | To predict the amount of PV solar power. | The data were obtained from 164 PV plants for 63 months. | RNN-LSTM |
|
M. Mishra et al. [37] | Urbana Champaign, Illinois | To forecast a short-term solar power using various time intervals (1 day, 15 days, 30 days, 60 days ahead forecasting). | The datasets from February 2016–August 2017 and September 2017–October 2017. |
| They gave error results such as RMSE, MAE, MAPE, and R2. |
S. Ghimire et al. [38] | Australia | Propose a convolutional long-short-term memory (CLSTM) neural network hybrid model to predict half-hourly global solar radiation (GSR). | Data from 1 January 2006 to 31 August 2018. | Some models:
|
|
D. Lee et al. [39] | Gumi city in South Korea | Build three different deep learning models to predict the solar power output of PV panels. | Data were a PV power output dataset for 39 months (from 1 June 2013 to 31 August 2016) from a PV operator located in Gumi city in South Korea. |
| LSTM-based model performs better by more than 50% compared to the conventional statistical models in terms of mean absolute error. |
Z. Pang et al. [40] | Tuscaloosa, Alabama, United States | Create two models using a shallow ANN and an RNN to estimate the solar radiation. | The data utilized wereonly meteorologicaldata from a localweather station in Tuscaloosa, Alabama, United States |
| They gave error results of RMSE and NMBE for both models. |
Dates dd.MM.yyyy HH:mm | P1 Amorphous Thin-Film Silicon (kWh) | P2 Polycrystalline Silicon (kWh) | P3 Monocrystalline Silicon (kWh) | Average Atmospheric Temperature | Radiation Amounts | Panels Temperature |
---|---|---|---|---|---|---|
01.01.2014 11:50 | 454.81 | 600.56 | 613.59 | 7.40 | 55.00 | 7.70 |
01.01.2014 11:55 | 454.82 | 600.57 | 613.60 | 7.40 | 56.00 | 7.70 |
01.01.2014 12:00 | 454.83 | 600.58 | 613.61 | 7.40 | 56.00 | 7.70 |
01.01.2014 12:05 | 454.84 | 600.58 | 613.62 | 7.40 | 54.00 | 7.60 |
01.01.2014 12:10 | 454.84 | 600.59 | 613.62 | 7.50 | 53.00 | 7.60 |
01.01.2014 12:15 | 454.85 | 600.60 | 613.63 | 7.50 | 53.00 | 7.70 |
01.01.2014 12:20 | 454.86 | 600.61 | 613.64 | 7.50 | 56.00 | 7.70 |
01.01.2014 12:25 | 454.87 | 600.62 | 613.65 | 7.60 | 56.00 | 7.80 |
01.01.2014 12:30 | 454.88 | 600.62 | 613.65 | 7.50 | 56.00 | 7.80 |
Months | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Days | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sept. | Oct. | Nov. | Dec. |
1 | 8.0 | 7.0 | 6.4 | 1.5 | 4.6 | 6.2 | 4.4 | 2.5 | 5.0 | 1.2 | 7.0 | 7.7 |
2 | 7.0 | 1.1 | 6.9 | 4.4 | 5.2 | 5.8 | 4.1 | 5.2 | 3.8 | 2.9 | 7.0 | 7.0 |
3 | 7.0 | 0.0 | 5.9 | 4.3 | 4.2 | 6.0 | 5.3 | 6.8 | 5.4 | 5.7 | 3.7 | 6.5 |
4 | 6.4 | 3.1 | 6.7 | 2.7 | 6.1 | 6.0 | 6.1 | 5.2 | 4.7 | 7.0 | 0.8 | 6.3 |
5 | 4.6 | 0.7 | 4.6 | 5.7 | 6.3 | 7.0 | 4.0 | 4.3 | 6.8 | 5.5 | 1.9 | 7.2 |
6 | 5.4 | 0.9 | 4.3 | 5.8 | 6.8 | 7.0 | 0.6 | 1.9 | 6.3 | 6.7 | 0.8 | 6.4 |
7 | 3.6 | 0.2 | 3.8 | 5.3 | 5.4 | 6.3 | 1.1 | 6.1 | 3.8 | 3.8 | 0.5 | 6.2 |
8 | 0.0 | 0.6 | 7.9 | 6.8 | 6.7 | 6.3 | 1.6 | 5.6 | 5.4 | 3.0 | 3.0 | 6.4 |
9 | 7.6 | 5.7 | 8.0 | 0.8 | 6.8 | 4.9 | 0.0 | 5.8 | 4.6 | 6.6 | 5.4 | 6.8 |
10 | 8.6 | 6.4 | 8.0 | 1.2 | 6.6 | 3.0 | 1.9 | 2.7 | 5.0 | 4.8 | 5.9 | 6.8 |
Epochs | 500 |
Batch size | 16, 32, 64, 128, 256, 512, 1024 |
Learning Rate (LR) | [0.0005, 0.05] with step 0.005 |
Epochs | 500 |
Batch size | 16, 32, 64, 128, 256, 512, 1024 |
n | 1, 2, 5, 10, 15, 20, 30 h |
Method | MSE | |
---|---|---|
ANN Model | Minimum training loss | 0.0762 |
Minimum testing loss | 0.0775 | |
LSTM (Deep Learning) | Minimum training loss | 0.0049 |
Minimum testing loss | 0.0080 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozdemir, T.; Taher, F.; Ayinde, B.O.; Zurada, J.M.; Tuzun Ozmen, O. Comparison of Feedforward Perceptron Network with LSTM for Solar Cell Radiation Prediction. Appl. Sci. 2022, 12, 4463. https://doi.org/10.3390/app12094463
Ozdemir T, Taher F, Ayinde BO, Zurada JM, Tuzun Ozmen O. Comparison of Feedforward Perceptron Network with LSTM for Solar Cell Radiation Prediction. Applied Sciences. 2022; 12(9):4463. https://doi.org/10.3390/app12094463
Chicago/Turabian StyleOzdemir, Tugba, Fatma Taher, Babajide O. Ayinde, Jacek M. Zurada, and Ozge Tuzun Ozmen. 2022. "Comparison of Feedforward Perceptron Network with LSTM for Solar Cell Radiation Prediction" Applied Sciences 12, no. 9: 4463. https://doi.org/10.3390/app12094463