The simulation section in statistical analysis is a powerful tool for estimating the parameters of a distribution. Simulations involve generating artificial data based on the FGM-BLBE distribution, allowing researchers to explore the behavior of these models and estimate the associated parameters. This method is particularly useful when analytical solutions are challenging or unavailable. The primary goals of the simulation section are to assess the performance of statistical methods (MLE and Bayesian with different loss functions), evaluate the robustness of parameter estimation techniques, and gain insights into the potential variability of results under different scenarios. By mimicking the underlying data generation process, simulations provide a controlled environment for testing the statistical properties of estimation procedures. The objectives of this section are as follows:
Simulation Design
The simulation design of this study assesses the effectiveness of theoretical outcomes, encompassing both point and interval estimators, through different estimation methods such as maximum likelihood and Bayesian methodologies based on symmetric and asymmetric loss functions. A Monte Carlo simulation study is conducted, employing initial parameter values of the FGM-BLBE distribution, specifically = (2.4, 2.8, 0.4), (0.6, 2.8, 0.4), (0.6, 1.4, 0.4), and . By varying combinations of n (sample sizes), m (effective sample size), and p (parameter of the binomial removal pattern), a comprehensive set of 5000 progressively Type-II censored samples is generated, incorporating binomial removal from the FGM-BLBE distribution.
Moreover, varying values of are considered. Within each configuration, the MLEs, Bayesian estimators (BEs), and their associated ACIs or HPD intervals are examined and assessed. Additionally, various combinations of such as (50, 35), (50, 45), (100, 75), and (100, 90) are considered, with fixed values of and . For each configuration, the MLEs, Bayesian estimates, and their associated asymptotic confidence intervals (ACIs) or HPD intervals are assessed with a confidence level of 95%.
In the simulation study, it’s important to highlight that the effectiveness of the suggested point estimates is evaluated by assessing biases, and mean squared errors (MSEs). As for the proposed interval estimates, their performance is evaluated by considering average interval lengths (AILs) (LACI and LCCI, for MLE and Bayesian, respectively) and coverage probability (CP).
In the simulation study, Bayesian estimators (BEs) are computed using the SELF and LINEX functions, specifically for c values of 0.5 and 2. It is essential to note that the hyperparameter values are determined through an elicitation method, where the choice of the hyperparameter method relies on prior knowledge about the unknown parameters. These informative priors are derived from the MLEs for
, obtained by equating the mean and variance of
to the mean and variance of the considered priors (Gamma priors). Here, t ranges from 1 to M, where M is the number of samples available from the FGM-BLBE distribution. By equating the mean and variance of
with those of the Gamma priors, the hyperparameters can be determined, as described by Dey et al. [
36].
Based on the generated data, Maximum Likelihood Estimates (MLEs) and their associated 95% ACIs or HPD are computed. It’s noteworthy that, when obtaining MLEs, the initial guess values are assumed to be identical to the true parameter values. Subsequently, the hyperparameter values are derived. These hyperparameter values are then incorporated to calculate the desired estimates. Finally, utilizing the MH algorithm for BEs, 2000 burn-in samples are excluded from the total 12,000 MCMC samples generated from the posterior density.
Table 1,
Table 2,
Table 3 and
Table 4 provide insights into these observations as follows:
BEs for parameters are calculated using two distinct loss functions, namely, the SEL and LINEX functions. Estimates associated with the LINEX function are obtained for c values of 0.5 and 2.
All average estimates and their corresponding MSEs for both methods are presented.
In the case of fixed censoring schemes (with identical parameters for binomial removal), as the effective size increases (i.e., n or m, or their combinations), the Bias, MSEs, and AILs of both MLEs and BEs for parameters of FGM-BLBE decrease.
For fxed value of n, when effective sample size m increases, the simulated MSEs decreases for most cases.
Based on Bias and MSEs, the Bayes estimates under SEL and LINEX provide better results than other estimates for MLEs.
As the sample size (n) and effective sample size (m) increase, the AILs for intervals related to the parameters of FGM-BLBE decrease.
The HPD credible intervals outperform the confidence intervals of the MLEs based on AIL and Coverage Probability (CP).
In terms of CP, the confidence intervals of the MLEs exhibit an average coverage probability of 95The performance of both classical and Bayesian estimates is deemed quite satisfactory.
Notably, the performance of BEs is better under the LINEX loss function compared to the SEL function.
Table 1.
MLE and Bayesian: .
Table 1.
MLE and Bayesian: .
| MLE | SELF | LINEX 1 (c = 0.5) | LINEX 2 (c = 2) |
---|
n | p | m | | Bias | MSE | LACI | CP | Bias | MSE | LCCI | Bias | MSE | LCCI | Bias | MSE | LCCI |
50 | 0.3 | 35 | | −0.0328 | 0.0859 | 1.1424 | 95.00% | 0.0299 | 0.0230 | 0.5356 | −0.0273 | 0.0199 | 0.4970 | 0.0928 | 0.0349 | 0.5771 |
| 0.0124 | 0.1292 | 1.4090 | 96.10% | 0.0653 | 0.0393 | 0.6593 | −0.0261 | 0.0296 | 0.6033 | 0.1566 | 0.0676 | 0.7453 |
| 0.0849 | 0.4679 | 2.6619 | 95.40% | 0.0631 | 0.1578 | 1.5195 | −0.0765 | 0.1716 | 1.5299 | 0.0776 | 0.1586 | 1.4898 |
45 | | −0.0061 | 0.0623 | 0.9785 | 95.50% | 0.0280 | 0.0193 | 0.4932 | −0.0086 | 0.0160 | 0.4624 | 0.0883 | 0.0283 | 0.5255 |
| −0.0098 | 0.1065 | 1.2793 | 97.70% | 0.0407 | 0.0304 | 0.5656 | −0.0221 | 0.0262 | 0.5319 | 0.1092 | 0.0445 | 0.6137 |
| 0.0197 | 0.2538 | 1.9743 | 95.60% | −0.0279 | 0.1384 | 1.4122 | −0.0700 | 0.1552 | 1.4293 | 0.0432 | 0.1342 | 1.3645 |
0.5 | 35 | | −0.0099 | 0.0939 | 1.2015 | 95.20% | 0.0444 | 0.0257 | 0.5542 | −0.0138 | 0.0208 | 0.5239 | 0.1085 | 0.0398 | 0.5948 |
| 0.0179 | 0.1289 | 1.4062 | 95.80% | 0.0689 | 0.0398 | 0.7032 | −0.0193 | 0.0297 | 0.6377 | 0.1609 | 0.0692 | 0.7777 |
| 0.0650 | 1.2308 | 4.3435 | 95.10% | −0.0366 | 0.1660 | 1.5987 | −0.1181 | 0.1864 | 1.6172 | 0.0442 | 0.1615 | 1.5679 |
45 | | −0.0081 | 0.0567 | 0.9319 | 95.70% | 0.0330 | 0.0169 | 0.4774 | −0.0129 | 0.0142 | 0.4506 | 0.0827 | 0.0248 | 0.5081 |
| −0.0054 | 0.0830 | 1.1295 | 95.90% | 0.0443 | 0.0259 | 0.5930 | −0.0184 | 0.0213 | 0.5612 | 0.1128 | 0.0407 | 0.6421 |
| 0.0086 | 0.2612 | 2.0043 | 95.20% | −0.0348 | 0.1441 | 1.4432 | −0.1091 | 0.1603 | 1.4888 | 0.0383 | 0.1406 | 1.4236 |
0.8 | 35 | | −0.0192 | 0.1010 | 1.2444 | 95.20% | 0.0396 | 0.0224 | 0.5497 | −0.0188 | 0.0182 | 0.5120 | 0.1039 | 0.0359 | 0.5991 |
| −0.0052 | 0.1598 | 1.5679 | 95.20% | 0.0559 | 0.0366 | 0.6698 | −0.0239 | 0.0290 | 0.6135 | 0.1449 | 0.0618 | 0.7362 |
| 0.1475 | 2.1214 | 3.6423 | 96.30% | −0.0373 | 0.1654 | 1.5142 | −0.1207 | 0.1856 | 1.5342 | 0.0444 | 0.1618 | 1.4888 |
45 | | −0.0122 | 0.0666 | 1.0111 | 97.30% | 0.0353 | 0.0188 | 0.5002 | −0.0108 | 0.0158 | 0.4725 | 0.0852 | 0.0274 | 0.5342 |
| −0.0015 | 0.0933 | 1.1983 | 97.70% | 0.0467 | 0.0268 | 0.6009 | −0.0161 | 0.0219 | 0.5627 | 0.1152 | 0.0418 | 0.6486 |
| 0.0317 | 0.2982 | 2.1382 | 99.90% | −0.0198 | 0.1373 | 1.4085 | −0.0928 | 0.1524 | 1.4512 | 0.0425 | 0.1352 | 1.3700 |
100 | 0.3 | 75 | | −0.0148 | 0.0381 | 0.7629 | 95.20% | 0.0184 | 0.0106 | 0.3849 | −0.0094 | 0.0096 | 0.3733 | 0.0476 | 0.0133 | 0.3999 |
| −0.0033 | 0.0553 | 0.9218 | 94.60% | 0.0277 | 0.0158 | 0.4686 | −0.0147 | 0.0140 | 0.4552 | 0.0680 | 0.0211 | 0.4926 |
| −0.0051 | 0.1240 | 1.3809 | 95.30% | −0.0222 | 0.0964 | 1.1995 | −0.0753 | 0.1056 | 1.2145 | 0.0301 | 0.0936 | 1.1848 |
90 | | −0.0096 | 0.0301 | 0.6790 | 95.90% | 0.0169 | 0.0081 | 0.3380 | −0.0063 | 0.0074 | 0.3268 | 0.0410 | 0.0100 | 0.3473 |
| −0.0027 | 0.0411 | 0.7945 | 95.60% | 0.0207 | 0.0112 | 0.4087 | −0.0111 | 0.0102 | 0.3962 | 0.0541 | 0.0146 | 0.4212 |
| −0.0045 | 0.0999 | 1.2391 | 96.10% | −0.0203 | 0.0820 | 1.1113 | −0.0736 | 0.0906 | 1.1468 | 0.0260 | 0.0796 | 1.0764 |
0.5 | 75 | | −0.0175 | 0.0379 | 0.7609 | 94.80% | 0.0162 | 0.0102 | 0.3824 | −0.0114 | 0.0094 | 0.3709 | 0.0451 | 0.0128 | 0.3982 |
| −0.0050 | 0.0497 | 0.8742 | 94.50% | 0.0258 | 0.0136 | 0.4494 | −0.0121 | 0.0121 | 0.4313 | 0.0659 | 0.0185 | 0.4711 |
| 0.0121 | 0.1616 | 1.5759 | 96.00% | −0.0179 | 0.1041 | 1.2251 | −0.0732 | 0.1137 | 1.2536 | 0.0371 | 0.1016 | 1.2036 |
90 | | 0.0017 | 0.0331 | 0.7131 | 95.40% | 0.0152 | 0.0097 | 0.3500 | −0.0010 | 0.0088 | 0.3447 | 0.0417 | 0.0120 | 0.3572 |
| −0.0003 | 0.0438 | 0.8208 | 95.80% | 0.0250 | 0.0127 | 0.4004 | −0.0069 | 0.0113 | 0.3879 | 0.0583 | 0.0164 | 0.4152 |
| 0.0017 | 0.1049 | 1.2700 | 96.60% | −0.0153 | 0.0826 | 1.0660 | −0.0707 | 0.0914 | 1.0988 | 0.0193 | 0.0795 | 1.0361 |
0.8 | 75 | | −0.0115 | 0.0400 | 0.7836 | 95.80% | 0.0211 | 0.0110 | 0.3793 | −0.0067 | 0.0099 | 0.3694 | 0.0502 | 0.0139 | 0.3950 |
| −0.0065 | 0.0493 | 0.8706 | 94.60% | 0.0248 | 0.0141 | 0.4378 | −0.0132 | 0.0126 | 0.4186 | 0.0648 | 0.0190 | 0.4604 |
| 0.0168 | 0.1316 | 1.4213 | 94.60% | −0.0269 | 0.1036 | 1.2091 | −0.0812 | 0.1136 | 1.2111 | 0.0270 | 0.1001 | 1.2003 |
90 | | −0.0093 | 0.0314 | 0.6936 | 96.70% | 0.0174 | 0.0088 | 0.3454 | −0.0060 | 0.0080 | 0.3379 | 0.0418 | 0.0108 | 0.3530 |
| −0.0030 | 0.0404 | 0.7884 | 94.90% | 0.0224 | 0.0115 | 0.3998 | −0.0093 | 0.0104 | 0.3856 | 0.0554 | 0.0149 | 0.4137 |
| 0.0164 | 0.1066 | 1.2791 | 94.70% | −0.0065 | 0.0869 | 1.1233 | −0.0555 | 0.0937 | 1.1434 | 0.0194 | 0.0857 | 1.1097 |
Table 2.
MLE and Bayesian: .
Table 2.
MLE and Bayesian: .
| MLE | SELF | LINEX 1 (c = 0.5) | LINEX 2 (c = 2) |
---|
n | p | m | | Bias | MSE | LACI | CP | Bias | MSE | LCCI | Bias | MSE | LCCI | Bias | MSE | LCCI |
50 | 0.3 | 35 | | −0.0047 | 0.0054 | 0.2870 | 95.00% | 0.0114 | 0.0017 | 0.1461 | 0.0077 | 0.0016 | 0.1429 | 0.0153 | 0.0019 | 0.1495 |
| 0.0277 | 0.1033 | 1.2557 | 95.00% | 0.0624 | 0.0366 | 0.6941 | −0.0196 | 0.0281 | 0.6428 | 0.1549 | 0.0642 | 0.7735 |
| 0.0297 | 0.3360 | 2.2704 | 94.20% | −0.0415 | 0.1594 | 1.5305 | −0.1210 | 0.1812 | 1.5669 | 0.0379 | 0.1528 | 1.4824 |
45 | | 0.0034 | 0.0040 | 0.2487 | 95.40% | 0.0104 | 0.0013 | 0.1258 | 0.0074 | 0.0012 | 0.1242 | 0.0134 | 0.0014 | 0.1275 |
| 0.0241 | 0.0912 | 1.1806 | 95.20% | 0.0507 | 0.0296 | 0.6108 | −0.0131 | 0.0240 | 0.5708 | 0.1205 | 0.0458 | 0.6623 |
| 0.0274 | 0.2796 | 2.0531 | 95.70% | −0.0086 | 0.1372 | 1.4309 | −0.0795 | 0.1486 | 1.4811 | 0.0261 | 0.1381 | 1.4265 |
0.5 | 35 | | 0.0010 | 0.0047 | 0.2689 | 95.10% | 0.0120 | 0.0015 | 0.1346 | 0.0082 | 0.0014 | 0.1326 | 0.0159 | 0.0017 | 0.1364 |
| 0.0254 | 0.1134 | 1.3169 | 94.20% | 0.0563 | 0.0373 | 0.6965 | −0.0251 | 0.0300 | 0.6514 | 0.1478 | 0.0630 | 0.7502 |
| 0.0730 | 0.4035 | 2.4747 | 94.40% | −0.0334 | 0.1610 | 1.5234 | −0.1114 | 0.1765 | 1.5283 | 0.0439 | 0.1600 | 1.4947 |
45 | | −0.0007 | 0.0040 | 0.2472 | 95.40% | 0.0096 | 0.0012 | 0.1262 | 0.0066 | 0.0011 | 0.1245 | 0.0126 | 0.0013 | 0.1278 |
| 0.0077 | 0.0917 | 1.1872 | 94.40% | 0.0449 | 0.0270 | 0.5973 | −0.0180 | 0.0223 | 0.5626 | 0.1137 | 0.0418 | 0.6484 |
| 0.0647 | 0.2887 | 2.0919 | 95.10% | −0.0159 | 0.1390 | 1.4569 | −0.0857 | 0.1526 | 1.4726 | 0.0415 | 0.1370 | 1.4280 |
0.8 | 35 | | 0.0021 | 0.0062 | 0.3089 | 94.70% | 0.0130 | 0.0016 | 0.1390 | 0.0092 | 0.0015 | 0.1377 | 0.0169 | 0.0018 | 0.1412 |
| 0.0440 | 0.1558 | 1.5383 | 94.40% | 0.0684 | 0.0404 | 0.7062 | −0.0138 | 0.0306 | 0.6567 | 0.1612 | 0.0702 | 0.7839 |
| 0.1084 | 0.9564 | 3.8119 | 94.70% | −0.0072 | 0.1535 | 1.5017 | −0.0851 | 0.1680 | 1.5414 | 0.0703 | 0.1543 | 1.4590 |
45 | | −0.0013 | 0.0038 | 0.2432 | 94.80% | 0.0091 | 0.0011 | 0.1220 | 0.0061 | 0.0011 | 0.1208 | 0.0121 | 0.0012 | 0.1236 |
| 0.0216 | 0.0900 | 1.1733 | 94.70% | 0.0525 | 0.0294 | 0.6045 | −0.0114 | 0.0235 | 0.5767 | 0.1227 | 0.0462 | 0.6564 |
| 0.0608 | 0.2444 | 1.9243 | 95.50% | −0.0071 | 0.1334 | 1.3996 | −0.0771 | 0.1458 | 1.4296 | 0.0607 | 0.1336 | 1.3723 |
100 | 0.3 | 75 | | −0.0014 | 0.0024 | 0.1936 | 95.10% | 0.0054 | 0.0007 | 0.0986 | 0.0037 | 0.0007 | 0.0979 | 0.0072 | 0.0007 | 0.0990 |
| 0.0189 | 0.0494 | 0.8712 | 94.00% | 0.0273 | 0.0148 | 0.4558 | −0.0111 | 0.0131 | 0.4388 | 0.0679 | 0.0199 | 0.4729 |
| 0.0104 | 0.1328 | 1.4288 | 95.30% | −0.0252 | 0.1019 | 1.2475 | −0.0805 | 0.1120 | 1.2396 | 0.0292 | 0.0987 | 1.2122 |
90 | | −0.0005 | 0.0020 | 0.1765 | 95.70% | 0.0045 | 0.0006 | 0.0895 | 0.0030 | 0.0005 | 0.0887 | 0.0060 | 0.0006 | 0.0901 |
| 0.0137 | 0.0462 | 0.8413 | 95.20% | 0.0248 | 0.0135 | 0.4145 | −0.0072 | 0.0122 | 0.4039 | 0.0582 | 0.0172 | 0.4269 |
| 0.0104 | 0.1020 | 1.2441 | 95.70% | −0.0150 | 0.0856 | 1.1287 | −0.0642 | 0.0935 | 1.1731 | 0.0283 | 0.0833 | 1.0873 |
0.5 | 75 | | 0.0038 | 0.0026 | 0.1985 | 95.80% | 0.0057 | 0.0007 | 0.1006 | 0.0039 | 0.0007 | 0.0992 | 0.0075 | 0.0008 | 0.1014 |
| 0.0197 | 0.0517 | 0.8882 | 95.30% | 0.0320 | 0.0153 | 0.4358 | −0.0064 | 0.0132 | 0.4220 | 0.0727 | 0.0209 | 0.4541 |
| 0.0148 | 0.1216 | 1.3665 | 94.90% | −0.0231 | 0.1041 | 1.2150 | −0.0777 | 0.1153 | 1.2561 | 0.0311 | 0.0991 | 1.1716 |
90 | | −0.0029 | 0.0020 | 0.1739 | 96.80% | 0.0039 | 0.0005 | 0.0863 | 0.0024 | 0.0005 | 0.0856 | 0.0054 | 0.0006 | 0.0867 |
| 0.0191 | 0.0403 | 0.7833 | 95.50% | 0.0286 | 0.0118 | 0.4000 | −0.0035 | 0.0104 | 0.3908 | 0.0621 | 0.0157 | 0.4125 |
| 0.0110 | 0.0985 | 1.2298 | 95.10% | −0.0225 | 0.0825 | 1.0821 | −0.0746 | 0.0911 | 1.1093 | 0.0240 | 0.0795 | 1.0663 |
0.8 | 75 | | 0.0019 | 0.0023 | 0.1880 | 94.10% | 0.0070 | 0.0006 | 0.0936 | 0.0053 | 0.0006 | 0.0930 | 0.0089 | 0.0007 | 0.0945 |
| 0.0203 | 0.0451 | 0.8295 | 95.00% | 0.0329 | 0.0146 | 0.4401 | −0.0053 | 0.0125 | 0.4232 | 0.0733 | 0.0201 | 0.4602 |
| 0.0391 | 0.1234 | 1.3689 | 95.10% | −0.0212 | 0.0942 | 1.1688 | −0.0655 | 0.1031 | 1.1980 | 0.0419 | 0.0924 | 1.1256 |
90 | | −0.0012 | 0.0019 | 0.1690 | 96.10% | 0.0049 | 0.0005 | 0.0835 | 0.0034 | 0.0005 | 0.0825 | 0.0064 | 0.0005 | 0.0842 |
| 0.0181 | 0.0402 | 0.7835 | 96.50% | 0.0238 | 0.0117 | 0.4021 | −0.0048 | 0.0105 | 0.3873 | 0.0574 | 0.0153 | 0.4194 |
| 0.0253 | 0.1052 | 1.2682 | 95.70% | −0.0201 | 0.0841 | 1.0994 | −0.0610 | 0.0913 | 1.1156 | 0.0266 | 0.0822 | 1.0762 |
Table 3.
MLE and Bayesian: .
Table 3.
MLE and Bayesian: .
| MLE | SELF | LINEX 1 (c = 0.5) | LINEX 2 (c = 2) |
---|
n | p | m | | Bias | MSE | LACI | CP | Bias | MSE | LCCI | Bias | MSE | LCCI | Bias | MSE | LCCI |
50 | 0.3 | 35 | | −0.0132 | 0.0051 | 0.2796 | 94.80% | 0.0117 | 0.0016 | 0.1415 | 0.0080 | 0.0014 | 0.1390 | 0.0156 | 0.0017 | 0.1436 |
| 0.0073 | 0.0278 | 0.6533 | 95.40% | 0.0299 | 0.0088 | 0.3372 | 0.0090 | 0.0073 | 0.3242 | 0.0522 | 0.0115 | 0.3513 |
| 0.0947 | 0.3987 | 2.4484 | 94.90% | −0.0308 | 0.1763 | 1.5871 | −0.1097 | 0.1909 | 1.5719 | 0.0575 | 0.1759 | 1.5793 |
45 | | −0.0082 | 0.0039 | 0.2432 | 94.90% | 0.0090 | 0.0012 | 0.1290 | 0.0060 | 0.0011 | 0.1276 | 3.0000 | 0.0013 | 0.1312 |
| 0.0067 | 0.0215 | 0.5718 | 95.70% | 0.0275 | 0.0072 | 0.2959 | 0.0081 | 0.0061 | 0.2858 | 0.0447 | 0.0089 | 0.3084 |
| 0.0558 | 0.2393 | 1.9062 | 95.30% | −0.0166 | 0.1351 | 1.3935 | −0.0847 | 0.1498 | 1.4207 | 0.0514 | 0.1307 | 1.3536 |
0.5 | 35 | | 0.0045 | 0.0060 | 0.3045 | 94.50% | 0.0125 | 0.0015 | 0.1403 | 0.0087 | 0.0014 | 0.1380 | 0.0164 | 0.0017 | 0.1430 |
| 0.0112 | 0.0308 | 0.6872 | 94.30% | 0.0301 | 0.0090 | 0.3430 | 0.0093 | 0.0075 | 0.3261 | 0.0523 | 0.0117 | 0.3608 |
| 0.0847 | 1.0215 | 3.9499 | 94.20% | −0.0264 | 0.1598 | 1.5356 | −0.1044 | 0.1781 | 1.6191 | 0.0519 | 0.1554 | 1.4894 |
45 | | −0.0011 | 0.0041 | 0.2526 | 94.80% | 0.0105 | 0.0013 | 0.1256 | 0.0075 | 0.0012 | 0.1238 | 0.0136 | 0.0014 | 0.1276 |
| 0.0027 | 0.0229 | 0.5933 | 95.20% | 0.0208 | 0.0068 | 0.2958 | 0.0048 | 0.0060 | 0.2882 | 0.0375 | 0.0082 | 0.3069 |
| 0.0527 | 0.2348 | 1.8892 | 94.80% | −0.0260 | 0.1297 | 1.4052 | −0.0996 | 0.1446 | 1.4422 | 0.0397 | 0.1256 | 1.3729 |
0.8 | 35 | | −0.0034 | 0.0055 | 0.2904 | 94.50% | 0.0118 | 0.0017 | 0.1460 | 0.0080 | 0.0016 | 0.1439 | 0.0157 | 0.0019 | 0.1487 |
| −0.0013 | 0.0297 | 0.6754 | 95.60% | 0.0276 | 0.0095 | 0.3473 | 0.0070 | 0.0080 | 0.3302 | 0.0495 | 0.0121 | 0.3645 |
| 0.1188 | 0.3647 | 2.3222 | 94.60% | −0.0095 | 0.1613 | 1.5605 | −0.0893 | 0.1733 | 1.5790 | 0.0695 | 0.1647 | 1.5288 |
45 | | −0.0028 | 0.0037 | 0.2376 | 95.20% | 0.0084 | 0.0011 | 0.1240 | 0.0054 | 0.0011 | 0.1225 | 0.0115 | 0.0012 | 0.1259 |
| 0.0010 | 0.0219 | 0.5790 | 95.83% | 0.0261 | 0.0071 | 0.3006 | 0.0061 | 0.0060 | 0.2878 | 0.0432 | 0.0088 | 0.3129 |
| 0.0730 | 0.2703 | 2.0189 | 95.50% | −0.0081 | 0.1367 | 1.4128 | −0.0828 | 0.1485 | 1.4442 | 0.0577 | 0.1368 | 1.4020 |
100 | 0.3 | 75 | | −0.0007 | 0.0021 | 0.1808 | 94.70% | 0.0055 | 0.0006 | 0.0953 | 0.0037 | 0.0006 | 0.0943 | 0.0073 | 0.0007 | 0.0963 |
| 0.0111 | 0.0128 | 0.4413 | 94.60% | 0.0170 | 0.0038 | 0.2220 | 0.0072 | 0.0035 | 0.2184 | 0.0271 | 0.0045 | 0.2295 |
| 0.0314 | 0.1218 | 1.3629 | 95.00% | −0.0209 | 0.0990 | 1.2019 | −0.0759 | 0.1085 | 1.2219 | 0.0333 | 0.0962 | 1.1645 |
90 | | 0.0006 | 0.0020 | 0.1735 | 95.40% | 0.0054 | 0.0006 | 0.0869 | 0.0030 | 0.0005 | 0.0862 | 0.0071 | 0.0006 | 0.0874 |
| 0.0010 | 0.0102 | 0.3969 | 95.30% | 0.0101 | 0.0030 | 0.2049 | 0.0021 | 0.0028 | 0.2010 | 0.0183 | 0.0033 | 0.2077 |
| 0.0305 | 0.1068 | 1.2664 | 95.20% | −0.0178 | 0.0885 | 1.1292 | −0.0659 | 0.0956 | 1.1423 | 0.0299 | 0.0862 | 1.1189 |
0.5 | 75 | | −0.0018 | 0.0023 | 0.1865 | 95.10% | 0.0055 | 0.0006 | 0.0934 | 0.0037 | 0.0006 | 0.0929 | 0.0073 | 0.0007 | 0.0939 |
| 0.0073 | 0.0131 | 0.4481 | 95.20% | 0.0150 | 0.0038 | 0.2275 | 0.0052 | 0.0035 | 0.2216 | 0.0251 | 0.0044 | 0.2321 |
| 0.0370 | 0.1244 | 1.3758 | 93.70% | −0.0269 | 0.0968 | 1.1932 | −0.0797 | 0.1074 | 1.2178 | 0.0257 | 0.0928 | 1.1561 |
90 | | 0.0013 | 0.0021 | 0.1788 | 96.50% | 0.0051 | 0.0006 | 0.0894 | 0.0034 | 0.0006 | 0.0888 | 0.0071 | 0.0006 | 0.0903 |
| 0.0012 | 0.0107 | 0.4024 | 95.80% | 0.0146 | 0.0033 | 0.2145 | 0.0047 | 0.0030 | 0.2118 | 0.0229 | 0.0037 | 0.2182 |
| 0.0244 | 0.1077 | 1.2837 | 94.50% | −0.0231 | 0.0857 | 1.1155 | −0.0748 | 0.0966 | 1.1466 | 0.0179 | 0.0808 | 1.0828 |
0.8 | 75 | | −0.0014 | 0.0024 | 0.1913 | 95.90% | 0.0058 | 0.0007 | 0.0947 | 0.0040 | 0.0006 | 0.0937 | 0.0076 | 0.0007 | 0.0958 |
| 0.0034 | 0.0115 | 0.4210 | 95.70% | 0.0131 | 0.0034 | 0.2171 | 0.0034 | 0.0032 | 0.2144 | 0.0230 | 0.0039 | 0.2224 |
| 0.0099 | 0.1223 | 1.3711 | 95.40% | −0.0400 | 0.0976 | 1.1740 | −0.0984 | 0.1121 | 1.2206 | 0.0176 | 0.0916 | 1.1566 |
90 | | −0.0012 | 0.0020 | 0.1775 | 96.70% | 0.0046 | 0.0006 | 0.0881 | 0.0031 | 0.0005 | 0.0872 | 0.0061 | 0.0006 | 0.0886 |
| 0.0019 | 0.0105 | 0.4014 | 95.90% | 0.0114 | 0.0030 | 0.2068 | 0.0030 | 0.0028 | 0.2029 | 0.0197 | 0.0033 | 0.2108 |
| 0.0061 | 0.1011 | 1.2470 | 96.30% | −0.0351 | 0.0844 | 1.1097 | −0.0970 | 0.0959 | 1.1398 | −0.0024 | 0.0788 | 1.0932 |
Table 4.
MLE and Bayesian: .
Table 4.
MLE and Bayesian: .
| MLE | SELF | LINEX 1 (c = 0.5) | LINEX 2 (c = 2) |
---|
n | p | m | | Bias | MSE | LACI | CP | Bias | MSE | LCCI | Bias | MSE | LCCI | Bias | MSE | LCCI |
50 | 0.3 | 35 | | −0.0070 | 0.0343 | 0.7260 | 94.20% | 0.0312 | 0.0093 | 0.3403 | 0.0085 | 0.0076 | 0.3263 | 0.0552 | 0.0124 | 0.3597 |
| 0.0064 | 0.0722 | 1.0535 | 94.70% | 0.0391 | 0.0176 | 0.4679 | −0.0015 | 0.0143 | 0.4377 | 0.0830 | 0.0253 | 0.5004 |
| 0.2461 | 1.1824 | 4.1540 | 94.10% | −0.0742 | 0.2469 | 1.9682 | −0.2396 | 0.3021 | 2.0128 | 0.0818 | 0.2529 | 1.9908 |
45 | | −0.0059 | 0.0276 | 0.6514 | 95.70% | 0.0230 | 0.0078 | 0.3178 | 0.0052 | 0.0067 | 0.3104 | 0.0417 | 0.0095 | 0.3326 |
| −0.0010 | 0.0472 | 0.8517 | 95.40% | 0.0333 | 0.0136 | 0.4088 | 0.0013 | 0.0113 | 0.3912 | 0.0669 | 0.0184 | 0.4356 |
| 0.1490 | 0.4781 | 2.6481 | 95.50% | −0.0708 | 0.2022 | 1.7733 | −0.2310 | 0.2546 | 1.7841 | 0.0521 | 0.1997 | 1.7729 |
0.5 | 35 | | −0.0039 | 0.0330 | 0.7123 | 94.40% | 0.0292 | 0.0096 | 0.3521 | 0.0065 | 0.0079 | 0.3327 | 0.0532 | 0.0126 | 0.3718 |
| 0.0092 | 0.0661 | 1.0076 | 94.60% | 0.0487 | 0.0198 | 0.4806 | 0.0075 | 0.0154 | 0.4495 | 0.0935 | 0.0290 | 0.5141 |
| 0.1821 | 0.8007 | 3.4361 | 94.80% | −0.0944 | 0.2629 | 2.0018 | −0.2660 | 0.3235 | 1.9956 | 0.0660 | 0.2730 | 1.9872 |
45 | | −0.0035 | 0.0256 | 0.6267 | 95.00% | 0.0247 | 0.0077 | 0.3167 | 0.0061 | 0.0066 | 0.3063 | 0.0435 | 0.0096 | 0.3271 |
| −0.0029 | 0.0478 | 0.8572 | 95.10% | 0.0338 | 0.0139 | 0.4287 | 0.0022 | 0.0116 | 0.4070 | 0.0674 | 0.0188 | 0.4513 |
| 0.1231 | 0.4419 | 2.5621 | 95.00% | −0.0881 | 0.2149 | 1.7729 | −0.2358 | 0.2646 | 1.8031 | 0.0486 | 0.2146 | 1.7874 |
0.8 | 35 | | 0.0062 | 0.0416 | 0.7999 | 94.60% | 0.0317 | 0.0104 | 0.3627 | 0.0089 | 0.0086 | 0.3461 | 0.0558 | 0.0135 | 0.3863 |
| 0.0173 | 0.0730 | 1.0576 | 94.50% | 0.0506 | 0.0199 | 0.4789 | 0.0095 | 0.0154 | 0.4520 | 0.0950 | 0.0289 | 0.5167 |
| 0.2036 | 1.8335 | 5.2502 | 94.80% | −0.0930 | 0.2693 | 1.9472 | −0.2637 | 0.3301 | 1.9601 | 0.0664 | 0.2705 | 1.9056 |
45 | | −0.0051 | 0.0258 | 0.6291 | 94.70% | 0.0233 | 0.0071 | 0.2963 | 0.0056 | 0.0062 | 0.2890 | 0.0418 | 0.0089 | 0.3123 |
| 0.0107 | 0.0505 | 0.8800 | 95.60% | 0.0408 | 0.0146 | 0.4183 | 0.0088 | 0.0118 | 0.3969 | 0.0749 | 0.0201 | 0.4439 |
| 0.1335 | 0.4812 | 2.6697 | 96.50% | −0.0888 | 0.2104 | 1.7752 | −0.2319 | 0.2525 | 1.7374 | 0.0436 | 0.2133 | 1.7664 |
100 | 0.3 | 75 | | −0.0044 | 0.0154 | 0.4861 | 95.50% | 0.0137 | 0.0043 | 0.2412 | 0.0030 | 0.0040 | 0.2357 | 0.0246 | 0.0049 | 0.2473 |
| −0.0041 | 0.0291 | 0.6689 | 95.70% | 0.0188 | 0.0079 | 0.3236 | −0.0008 | 0.0072 | 0.3140 | 0.0385 | 0.0095 | 0.3345 |
| 0.0690 | 0.1587 | 1.5388 | 95.00% | −0.0646 | 0.1221 | 1.3426 | −0.1612 | 0.1511 | 1.3890 | 0.0235 | 0.1138 | 1.3015 |
90 | | 0.0035 | 0.0117 | 0.4245 | 96.20% | 0.0125 | 0.0034 | 0.2116 | 0.0026 | 0.0031 | 0.2085 | 0.0244 | 0.0039 | 0.2154 |
| −0.0008 | 0.0212 | 0.5707 | 96.10% | 0.0152 | 0.0058 | 0.2821 | −0.0007 | 0.0053 | 0.2769 | 0.0315 | 0.0068 | 0.2913 |
| 0.0421 | 0.1103 | 1.2922 | 96.40% | −0.0572 | 0.0915 | 1.1658 | −0.1539 | 0.1178 | 1.2033 | 0.0032 | 0.0811 | 1.1233 |
0.5 | 75 | | −0.0037 | 0.0150 | 0.4810 | 94.80% | 0.0147 | 0.0043 | 0.2391 | 0.0040 | 0.0039 | 0.2336 | 0.0257 | 0.0049 | 0.2447 |
| 0.0034 | 0.0262 | 0.6345 | 95.30% | 0.0191 | 0.0072 | 0.3163 | 0.0030 | 0.0065 | 0.3090 | 0.0387 | 0.0088 | 0.3248 |
| 0.0701 | 0.1601 | 1.5450 | 95.10% | −0.0723 | 0.1109 | 1.1736 | −0.1670 | 0.1410 | 1.2443 | 0.0142 | 0.1013 | 1.1556 |
90 | | −0.0025 | 0.0119 | 0.4280 | 95.40% | 0.0123 | 0.0033 | 0.2112 | 0.0033 | 0.0030 | 0.2077 | 0.0214 | 0.0037 | 0.2152 |
| 0.0031 | 0.0210 | 0.5677 | 95.70% | 0.0187 | 0.0059 | 0.2850 | 0.0028 | 0.0053 | 0.2791 | 0.0351 | 0.0070 | 0.2924 |
| 0.0490 | 0.1192 | 1.3405 | 95.60% | −0.0697 | 0.0959 | 1.1814 | −0.1506 | 0.1213 | 1.2189 | 0.0049 | 0.0861 | 1.1466 |
0.8 | 75 | | 0.0018 | 0.0142 | 0.4671 | 94.70% | 0.0166 | 0.0043 | 0.2501 | 0.0057 | 0.0039 | 0.2437 | 0.0279 | 0.0050 | 0.2547 |
| −0.0079 | 0.0491 | 0.8683 | 95.10% | 0.0314 | 0.1665 | 0.3152 | −0.0053 | 0.0067 | 0.3057 | 0.0786 | 0.0261 | 0.3280 |
| 0.0335 | 0.1402 | 1.4628 | 95.00% | −0.0968 | 0.1217 | 1.3807 | −0.1922 | 0.1557 | 1.4195 | −0.0085 | 0.1087 | 1.3358 |
90 | | −0.0007 | 0.0112 | 0.4147 | 95.20% | 0.0122 | 0.0032 | 0.2046 | 0.0032 | 0.0029 | 0.2011 | 0.0214 | 0.0036 | 0.2089 |
| 0.0061 | 0.0236 | 0.6018 | 95.70% | 0.0217 | 0.0068 | 0.3032 | 0.0051 | 0.0061 | 0.2959 | 0.0382 | 0.0081 | 0.3118 |
| 0.0304 | 0.1095 | 1.2874 | 96.00% | −0.0855 | 0.0924 | 1.1046 | −0.1685 | 0.1213 | 1.1597 | −0.0082 | 0.0798 | 1.0759 |