Unbiased Method to Determine Articular Cartilage Thickness Using a Three-Dimensional Model Derived from Laser Scanning: Demonstration on the Distal Femur
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eckhoff, D.G.; Bach, J.M.; Spitzer, V.M.; Reinig, K.D.; Bagur, M.M.; Baldini, T.H.; Rubinstein, D.; Humphries, S. Three-dimensional morphology and kinematics of the distal part of the femur viewed in virtual reality. Part II J. Bone Jt. Surg. Am. 2003, 85-A (Suppl. S4), 97–104. [Google Scholar] [CrossRef] [PubMed]
- Iranpour, F.; Merican, A.M.; Dandachli, W.; Amis, A.A.; Cobb, J.P. The geometry of the trochlear groove. Clin. Orthop. Relat. Res. 2010, 468, 782–788. [Google Scholar] [CrossRef]
- Guess, T.M.; Liu, H.; Bhashyam, S.; Thiagarajan, G. A multibody knee model with discrete cartilage prediction of tibio-femoral contact mechanics. Comput. Methods Biomech. Biomed. Eng. 2013, 16, 256–270. [Google Scholar] [CrossRef]
- Baldwin, M.A.; Langenderfer, J.E.; Rullkoetter, P.J.; Laz, P.J. Development of subject-specific and statistical shape models of the knee using an efficient segmentation and mesh-morphing approach. Comput. Methods Biomech. Biomed. Eng. 2010, 97, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Eckhoff, D.G.; Bach, J.M.; Spitzer, V.M.; Reinig, K.D.; Bagur, M.M.; Baldini, T.H.; Flannery, N.M. Three-dimensional mechanics, kinematics, and morphology of the knee viewed in virtual reality. J. Bone Jt. Surg. Am. 2005, 87 (Suppl. S2), 71–80. [Google Scholar]
- Hollister, A.M.; Jatana, S.; Singh, A.K.; Sullivan, W.W.; Lupichuk, A.G. The axes of rotation of the knee. Clin. Orthop. Relat. Res. 1993, 290, 259–268. [Google Scholar] [CrossRef]
- Iranpour, F.; Merican, A.M.; Baena, F.R.; Cobb, J.P.; Amis, A.A. Patellofemoral joint kinematics: The circular path of the patella around the trochlear axis. J. Orthop. Res. 2010, 28, 589–594. [Google Scholar] [CrossRef]
- Iwaki, H.; Pinskerova, V.; Freeman, M.A. Tibiofemoral movement 1: The shapes and relative movements of the femur and tibia in the unloaded cadaver knee. J. Bone Jt. Surg. Br. 2000, 82, 1189–1195. [Google Scholar] [CrossRef]
- Pinskerova, V.; Iwaki, H.; Freeman, M.A. The shapes and relative movements of the femur and tibia at the knee. Orthopade 2000, 29 (Suppl. S1), S3–S5. [Google Scholar] [CrossRef]
- Howell, S.M.; Hull, M.L.; Mahfouz, M.R. Kinematically Aligned Total Knee Arthroplasty. In Insall & Scott: Surgery of the Knee; Scott, W.N., Ed.; Elsevier: Philadelphia, PA, USA, 2018. [Google Scholar]
- Howell, S.M.; Papadopoulos, S.; Kuznik, K.T.; Hull, M.L. Accurate alignment and high function after kinematically aligned TKA performed with generic instruments. Knee Surg. Sports Traumatol. Arthrosc. 2013, 21, 2271–2280. [Google Scholar] [CrossRef]
- Argentieri, E.C.; Sturnick, D.R.; DeSarno, M.J.; Gardner-Morse, M.G.; Slauterbeck, J.R.; Johnson, R.J.; Beynnon, B.D. Changes to the articular cartilage thickness profile of the tibia following anterior cruciate ligament injury. Osteoarthr. Cartil. 2014, 22, 1453–1460. [Google Scholar] [CrossRef]
- Eckstein, F.; Heudorfer, L.; Faber, S.C.; Burgkart, R.; Englmeier, K.H.; Reiser, M. Long-term and resegmentation precision of quantitative cartilage MR imaging (qMRI). Osteoarthr. Cartil. 2002, 10, 922–928. [Google Scholar] [CrossRef] [PubMed]
- Koo, S.; Giori, N.J.; Gold, G.E.; Dyrby, C.O.; Andriacchi, T.P. Accuracy of 3D cartilage models generated from MR images is dependent on cartilage thickness: Laser scanner based validation of in vivo cartilage. J. Biomech. Eng. 2009, 131, 121004. [Google Scholar] [CrossRef] [PubMed]
- Kornaat, P.R.; Koo, S.; Andriacchi, T.P.; Bloem, J.L.; Gold, G.E. Comparison of quantitative cartilage measurements acquired on two 3.0T MRI systems from different manufacturers. J. Magn. Reson. Imaging 2006, 23, 770–773. [Google Scholar] [CrossRef]
- Li, G.; Park, S.E.; DeFrate, L.E.; Schutzer, M.E.; Ji, L.; Gill, T.J.; Rubash, H.E. The cartilage thickness distribution in the tibiofemoral joint and its correlation with cartilage-to-cartilage contact. Clin. Biomech. 2005, 20, 736–744. [Google Scholar] [CrossRef]
- Shah, R.F.; Martinez, A.M.; Pedoia, V.; Majumdar, S.; Vail, T.P.; Bini, S.A. Variation in the thickness of knee cartilage. The use of a novel machine learning algorithm for cartilage segmentation of magnetic resonance images. J. Arthroplast. 2019, 34, 2210–2215. [Google Scholar] [CrossRef] [PubMed]
- Cohen, Z.A.; McCarthy, D.M.; Kwak, S.D.; Legrand, P.; Fogarasi, F.; Ciaccio, E.J.; Ateshian, G.A. Knee cartilage topography, thickness, and contact areas from MRI: In-vitro calibration and in-vivo measurements. Osteoarthr. Cartil. 1999, 7, 95–109. [Google Scholar] [CrossRef]
- Omoumi, P.; Michoux, N.; Roemer, F.W.; Thienpont, E.; Vande Berg, B.C. Cartilage thickness at the posterior medial femoral condyle is increased in femorotibial knee osteoarthritis: A cross-sectional CT arthrography study (Part 2). Osteoarthr. Cartil. 2015, 23, 224–231. [Google Scholar] [CrossRef]
- Schmitz, R.J.; Wang, H.M.; Polprasert, D.R.; Kraft, R.A.; Pietrosimone, B.G. Evaluation of knee cartilage thickness: A comparison between ultrasound and magnetic resonance imaging methods. Knee 2017, 24, 217–223. [Google Scholar] [CrossRef]
- Naredo, E.; Acebes, C.; Moller, I.; Canillas, F.; de Agustin, J.J.; de Miguel, E.; Filippucci, E.; Iagnocco, A.; Moragues, C.; Tuneu, R.; et al. Ultrasound validity in the measurement of knee cartilage thickness. Ann. Rheum. Dis. 2009, 68, 1322–1327. [Google Scholar] [CrossRef]
- Ateshian, G.A.; Soslowsky, L.J.; Mow, V.C. Quantitation of articular surface topography and cartilage thickness in knee joints using stereophotogrammetry. J. Biomech. 1991, 24, 761–776. [Google Scholar] [CrossRef] [PubMed]
- Bowers, M.E.; Trinh, N.; Tung, G.A.; Crisco, J.J.; Kimia, B.B.; Fleming, B.C. Quantitative MR imaging using “LiveWire” to measure tibiofemoral articular cartilage thickness. Osteoarthr. Cartil. 2008, 16, 1167–1173. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.C.; Trinh, N.H.; Fleming, B.C.; Kimia, B.B. Reliable fusion of knee bone laser scans to establish ground truth for cartilage thickness measurement. In Proceedings of SPIE, Medical Imaging 2010: Image Processing; Dawant, B.M., Haynor, D.R., Eds.; International Society for Optics and Photonics: Bellingham, WA, USA, 2010; pp. 76232M-76231–76232M-76238. [Google Scholar]
- Trinh, N.H.; Lester, J.; Fleming, B.C.; Tung, G.; Kimia, B.B. Accurate measurement of cartilage morphology using a 3D laser scanner. In CVAMIA 2006, LNCS 4241; Beichel, R.R., Sonka, M., Eds.; Springer-Verlag: Berlin, Germany, 2006; pp. 37–48. [Google Scholar]
- Jurvelin, J.S.; Rasanen, T.; Kolmonen, P.; Lyyra, T. Comparison of optical, needle probe and ultrasonic techniques for the measurement of articular cartilage thickness. J. Biomech. 1995, 28, 231–235. [Google Scholar] [CrossRef]
- Campanelli, V.; Howell, S.M.; Hull, M.L. Accuracy evaluation of a lower-cost and four higher-cost laser scanners. J. Biomech. 2016, 49, 127–131. [Google Scholar] [CrossRef]
- ASTM International—Standards Worldwide. Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods; ASTM International: Philadelphia, PA, USA, 2013. [Google Scholar]
- Van den Broeck, J.; Vereecke, E.; Wirix-Speetjens, R.; Vander Sloten, J. Segmentation accuracy of long bones. Med. Eng. Phys. 2014, 36, 949–953. [Google Scholar] [CrossRef] [PubMed]
- Gelaude, F.; Vander Sloten, J.; Lauwers, B. Accuracy assessment of CT-based outer surface femur meshes. Comput. Aided Surg. 2008, 13, 188–199. [Google Scholar] [CrossRef]
- Fenton, T.W.; Birkby, W.H.; Cornelison, J. A fast and safe non-bleaching method for forensic skeletal preparations. J. Forensic Sci. 2003, 48, 274–276. [Google Scholar] [CrossRef]
- Lander, S.L.; Brits, D.; Hosie, M. The effects of freezing, boiling and degreasing on the microstructure of bone. Homo 2014, 65, 131–142. [Google Scholar] [CrossRef]
- Hall, E.R.; Russell, W.C. Dermestid beetles as an aid in cleaning bones. J. Mammal. 1933, 14, 372–374. [Google Scholar] [CrossRef]
- Hefti, E.; Trechsel, U.; Rufenacht, H.; Fleisch, H. Use of dermestid beetles for cleaning bones. Calcif. Tissue Int. 1980, 31, 45–47. [Google Scholar] [CrossRef]
0° of Flexion | 90° of Flexion | |||
---|---|---|---|---|
Specimen | Medial | Lateral | Medial | Lateral |
Specimen 1 | 2.0 (0.4) | 2.0 (0.3) | 1.9 (0.3) | 2.0 (0.1) |
Specimen 2 | 2.2 (0.3) | 1.5 (0.3) | 1.6 (0.1) | 1.9 (0.1) |
Specimen 3 | 1.5 (0.4) | 2.8 (0.2) | 1.2 (0.3) | 2.3 (0.3) |
Mean Average | 1.9 | 2.1 | 1.6 | 2.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campanelli, V.; Hull, M.L. Unbiased Method to Determine Articular Cartilage Thickness Using a Three-Dimensional Model Derived from Laser Scanning: Demonstration on the Distal Femur. Bioengineering 2024, 11, 1118. https://doi.org/10.3390/bioengineering11111118
Campanelli V, Hull ML. Unbiased Method to Determine Articular Cartilage Thickness Using a Three-Dimensional Model Derived from Laser Scanning: Demonstration on the Distal Femur. Bioengineering. 2024; 11(11):1118. https://doi.org/10.3390/bioengineering11111118
Chicago/Turabian StyleCampanelli, Valentina, and Maury L. Hull. 2024. "Unbiased Method to Determine Articular Cartilage Thickness Using a Three-Dimensional Model Derived from Laser Scanning: Demonstration on the Distal Femur" Bioengineering 11, no. 11: 1118. https://doi.org/10.3390/bioengineering11111118