Short Fiber-Reinforced Polymer Polyamide 6 Lugs and Selective Laser-Melted Ti-6Al-4V Bushing Contact Cohesive Zone Model Mode II Parameters’ Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Material Models
2.2. Methods
2.2.1. Problem Statement and Lugs Geometry
2.2.2. CZM Model
2.2.3. Determination of Contact Properties
2.2.4. Determination of the Load-Bearing Capacity of Lugs with Bushings
2.2.5. Manufacturing of Embedded Elements
2.2.6. Measuring the Roughness of Samples
2.2.7. Manufacturing of Samples of Lugs
3. Results
3.1. Manufacturing of Samples of Embedded Elements and Lugs
3.2. Experimental Determination of Mechanical Characteristics of Contact
3.3. Molding Analysis and Validation
3.4. Experimental Determination of the Load-Bearing Capacity of Lugs with Bushings
3.5. Verification of the Contact Interaction Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harris, C.E.; Starmes, J.H., Jr.; Shuart, M.J. Design and Manufacturing of Aerospace Composite Structures, State-of-the-Art Assessment. J. Aircr. 2002, 39, 545–560. [Google Scholar] [CrossRef]
- Das, M.; Sahu, S.; Parhi, D.R. A Review of Application of Composite Materials for Aerospace Structures and its Damage Detection Using Artificial Intelligence Techniques. In Proceedings of the International Conference on Artificial Intelligence in Manufacturing & Renewable Energy (ICAIMRE), Bhubaneswar, India, 25–26 October 2019. 10p. [Google Scholar] [CrossRef]
- Sriranga, B.K.; Kumar, R. Stress Analysis and Fatigue Life Prediction of Wing-Fuselage Lug Joint Attachment Bracket of a Transport Aircraft. Int. J. Res. Eng. Technol. 2014, 3, 818–822. [Google Scholar] [CrossRef]
- Antoni, N.; Gaisne, F. Analytical Modelling for Static Stress Analysis of Pin-Loaded Lugs with Bush Fitting. Appl. Math. Model. 2011, 35, 1–21. [Google Scholar] [CrossRef]
- Ekvall, J.C. Static Strength Analysis of Pin-Loaded Lugs. J. Aircr. 1986, 23, 438–443. [Google Scholar] [CrossRef]
- Schijve, J.; Hoeymakers, A.H.W. Fatigue Crack Growth in Lugs and the Stress Intensity Factor. In Delft University of Technology, Department of Aerospace Engineering, Report LR-273; Delft University of Technology: Delft, The Netherlands, 1978. [Google Scholar]
- Abraham, J. Pulickal Design Structural Analysis and Fatigue Calculation of Wing Fuselage Lug Attachment of a Transport Aircraft. Int. J. Mag. Eng. Technol. Manag. Res. 2017, 4, 60–65. Available online: http://www.ijmetmr.com/olaugust2017/AbrahamJPulickal-DamodaraReddy-6.pdf (accessed on 8 March 2024).
- Sumanth, M.H.; Ayyappa, T. Comparative Analysis of Aircraft Wing Fuselage Lug Attachment Bracket. Int. J. Technol. Res. Eng. 2017, 5, 4422–4429. [Google Scholar]
- Wallin, M.; Saarela, O.; Law, B.; Liehu, T. RTM Composite Lugs for High Load Transfer Applications. In Proceedings of the 25th Congress of the International Council of the Aeronautical Sciences, Hamburg, Germany, 3–8 September 2006; 9p. Available online: http://www.icas.org/ICAS_ARCHIVE/ICAS2006/PAPERS/448.PDF (accessed on 8 March 2024).
- Kurkin, E.; Espinosa Barcenas, O.U.; Kishov, E.; Lukyanov, O. Topology Optimization and Efficiency Evaluation of Short-Fiber-Reinforced Composite Structures Considering Anisotropy. Computation 2024, 12, 35. [Google Scholar] [CrossRef]
- Adin, H.; Bakir, G.S.; Özbay, M. Comparison of Different Bushing Applications in Composite Structures of the Aerospace Industry. Mater. Test. 2017, 59, 575–584. [Google Scholar] [CrossRef]
- Kaya, N. Shape Optimization of Rubber Bushing Using Differential Evolution Algorithm. Sci. World J. 2014, 379196, 9. [Google Scholar] [CrossRef]
- Bilal, H.; Ozturk, F. Rubber Bushing Optimization by Using a Novel Chaotic Krill Herd Optimization Algorithm. Soft Comput. 2021, 25, 14333–14355. [Google Scholar] [CrossRef]
- Zhang, H.; Takezawa, A.; Ding, X.; Xu, S.; Duan, P.; Li, H.; Guo, H. Bi-material microstructural design of biodegradable composites using topology optimization. Mater. Des. 2021, 209, 109973. [Google Scholar] [CrossRef]
- Fu, H.; Xu, H.; Liu, Y.; Yang, Z.; Kormakov, S.; Wu, D.; Sun, J. Overview of Injection Molding Technology for Processing Polymers and Their Composites. ES Mater. Manuf. 2020, 8, 3–23. [Google Scholar] [CrossRef]
- Thompson, M.K.; Moroni, G.; Vaneker, T.; Fadel, G.; Campbell, R.; Gibson, I.; Bernard, A.; Schulz, J.; Graf, P.; Ahuja, B.; et al. Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints. CIRP Ann. 2016, 65, 737–760. [Google Scholar] [CrossRef]
- Awaja, F.; Gilbert, M.; Kelly, G.; Fox, B.; Pigram, P. Adhesion of Polymers. Prog. Polym. Sci. 2009, 34, 948–968. [Google Scholar] [CrossRef]
- Titanium and Titanium Alloys. Fundamentals and Applications; Leyens, C., Peters, M., Eds.; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2003. [Google Scholar]
- Moiseyev, V.N. Titanium Alloys: Russian Aircraft and Aerospace Application; Fridlyander, J.N., Ed.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar] [CrossRef]
- Etesami, A.; Fotovvati, B.; Asadi, E. Heat Treatment of Ti-6Al-4V Alloy Manufactured by Laser-Based Powder-Bed Fusion: Process, Microstructures, and Mechanical Properties Correlations. J. Alloys Compd. 2022, 895, 162618. [Google Scholar] [CrossRef]
- Kolesnikov, B.; Herbeck, L.; Fink, A. CFRP/titanium Hybrid Material for Improving Composite Bolted Joints. Compos. Struct. 2008, 83, 368–380. [Google Scholar] [CrossRef]
- Agapovichev, A.; Sotov, A.; Kokareva, V.; Smelov, V.G.; Kyarimov, R. Study of the Structure and Mechanical Characteristics of Samples Obtained by Selective Laser Melting Technology from VT6 Alloy Metal Powder. Nanosci. Technol. Int. J. 2017, 8, 323–330. [Google Scholar] [CrossRef]
- Aleksandrov, V.K.; Anoshkin, N.F.; Bochvar, G.A.; Brun, M.Y.; Gelman, A.A.; Domnin, I.I.; Djakonov, Y.A.; Elagina, L.A.; Ermanok, M.Z.; Zvereva, Z.F.; et al. Semi-Finished Products from Titanium Alloys; Metallurgiya Press: Moscow, Russia, 1979. [Google Scholar]
- Heinz, A.; Haszler, A.; Keidel, C.; Moldenhauer, S.; Benedictus, R.; Miller, W.S. Recent Development in Aluminium Alloys for Aerospace Applications. Mater. Sci. Eng. 2000, 280, 102–107. [Google Scholar] [CrossRef]
- Lugauer, F.P.; Kandler, A.; Meyer, S.P.; Wunderling, C.; Zaeh, M.F. Induction-Based Joining of Titanium with Thermoplastics. Prod. Eng. Res. Devel. 2019, 13, 409–424. [Google Scholar] [CrossRef]
- Du, K.; Huang, J.; Li, C.; Chen, J.; Li, Y.; Yang, C.; Xia, X.; Sheng, X. The Bonding Strength of Polyamide-6 Direct Adhesion with Anodized AA5754 Aluminum Alloy. J. Thermoplast. Compos. Mater. 2020, 35, 1852–1865. [Google Scholar] [CrossRef]
- Reisgen, U.; Schleser, M.; Scheik, S.; Michaeli, W.; Grönlund, O.; Neuß, A.; Jakob, M. Novel Process Chainsfor the Production of Plastics/Metal-Hybrids. In Proceedings of the 17th International Conference on Concurrent Enterprising (ICE 2011), Aachen, Germany, 20–22 June 2011. [Google Scholar]
- Ehrig, F.; Wey, H.-R. In-Mold Decoration: Foil Technology for Metal Surfaces. Kunststoffe Int. 2007, 97, 38–40. [Google Scholar]
- Molitor, P.; Barron, V.; Young, T. Surface Treatment of Titanium for Adhesive Bonding to Polymer Composites: A Review. Int. J. Adhes. Adhes. 2001, 21, 129–136. [Google Scholar] [CrossRef]
- Schricker, K.; Schmitt, L.; Grätzel, M.; Ecke, G.; Bergmann, J. Bonding Mechanisms in Laser-Assisted Joining of Metal-Polymer Composites. J. Adv. Join. Process. 2020, 1, 100008. [Google Scholar] [CrossRef]
- Li, M.; Xiong, X.; Ji, S.; Hu, W.; Yue, Y. Achieving High-Quality Metal to Polymer-Matrix Composites Joint via Topthe Mic Solid-State Lap Joining. Compos. Part B Eng. 2021, 219, 108941. [Google Scholar] [CrossRef]
- Jun, G.; Lee, J.-W.; Shin, Y.; Kim, K.; Hwang, W. Solvent-Aided Direct Adhesion of a Metal/Polymer Joint using Micro/Nano Hierarchical Structures. J. Mater. Process. Technol. 2020, 285, 116744. [Google Scholar] [CrossRef]
- Ding, Z.; Wang, H.; Luo, J.; Li, N. A Review on Forming Technologies of Fibre Metal Laminates. Int. J. Lightweight Mater. Manuf. 2020, 4, 110–126. [Google Scholar] [CrossRef]
- Critchlow, G.W.; Brewis, D.M. Review of Surface Pretreatments for Titanium Alloys. Int. J. Adhes. Adhes. 1995, 15, 161–172. [Google Scholar] [CrossRef]
- Chanthapan, S.; Wattanapornphan, P.; Phongphisutthinan, C.; Kawahito, Y.; Suga, T. Effects of Oxide Layer on Adhesion and Durability of Titanium and Transparent Polyamide Joint by Laser Joining. J. Laser Appl. 2018, 30, 042005. [Google Scholar] [CrossRef]
- Roesner, A.; Scheik, S.; Olowinsky, A.; Gillner, A.; Reisgen, U.; Schleser, M. Laser Assisted Joining of Plastic Metal Hybrids. Phys. Procedia 2011, 37, 370–377. [Google Scholar] [CrossRef]
- Heckert, A.; Zaeh, M.F. Laser Surface Pre-Treatment of Aluminium for Hybrid Joints with Glass Fibre Reinforced Thermoplastics. Phys. Proc. 2014, 56, 1171–1181. [Google Scholar] [CrossRef]
- Wang, Z.; Bi, X.; Liu, B.; Xu, M.; Dong, Z. Adhesion Enhancement of PEEK/6161-T6 FLJ Joints via Laser Surface Modification. Compos. Part B Eng. 2021, 216, 108797. [Google Scholar] [CrossRef]
- Vasconcelos, R.; Marcatto de Oliveira, G.; Amancio-Filho, S.; Bresciani Canto, L. Injection Overmolding of Polymer-Metal Hybrid Structures: A Review. Polym. Eng. Sci. 2023, 63, 691–722. [Google Scholar] [CrossRef]
- Kinloch, A.J. Durability of Structural Adhesives; Elsevier Applied Science: Barking, UK, 1983; pp. 15–16. [Google Scholar]
- Du, M.; Dong, W.; Li, X.; Wang, L.; Wang, B.; Tang, B. Effect of Surface Topography on Injection Joining Ti Alloy for Improved Bonding Strength of Metal-Polymer. Surf. Coat. Technol. 2022, 433, 128132. [Google Scholar] [CrossRef]
- Larimian, T.; Borkar, T. Additive Manufacturing of In Situ Metal Matrix Composites. In Additive Manufacturing of Emerging Materials; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, M.; Li, Y.; Zhang, W.; Yang, C.; Kollo, L.; Eckert, J.; Prashanth, K.G. Premature Failure of an Additively Manufactured Material. NPG Asia Mater. 2020, 12, 30. [Google Scholar] [CrossRef]
- Singh, N.; Ummethala, R.; Hameed, P.; Sokkalingam, R.; Prashanth, K.G. Competition Between Densification and Microstructure of Functional Materials by Selective Laser Melting. Mater. Des. Process. Commun. 2020, 2, e146. [Google Scholar] [CrossRef]
- Prashanth, K.G.; Scudino, S. Quasicrystalline Composites by Additive Manufacturing. Key Eng. Mater. 2019, 818, 72–76. [Google Scholar] [CrossRef]
- Singh, N.; Hameed, P.; Ummethala, R.; Manivasagam, G.; Prashanth, K.G.; Eckert, J. Selective Laser Manufacturing of Ti-Based Alloys and Composites: Impact of Process Parameters, Application Trends, and Future Prospects. Mater. Today Adv. 2020, 8, 100097. [Google Scholar] [CrossRef]
- Abrate, S.; Ferrero, J.-F.; Navarro, P. Cohesive Zone Models and Impact Damage Predictions for Composite Structures. Meccanica 2015, 50, 2587–2620. [Google Scholar] [CrossRef]
- Pegorin, F.; Pingkarawat, K.; Mouritz, A.P. Comparative Study of the Mode I and Mode II Delamination Fatigue Properties of Z-Pinned Aircraft Composites. Mater. Des. 2015, 65, 139–146. [Google Scholar] [CrossRef]
- Asp, L.E.; Sjögren, A.; Greenhalgh, E.S. Delamination Growth and Thresholds in a Carbon/Epoxy Composite under Fatigue Loading. Compos. Technol. Res. 2001, 23, 55–68. [Google Scholar] [CrossRef]
- Hojo, M.; Ando, T.; Tanaka, M.; Adachi, T.; Ochiai, S.; Endo, Y. Modes I and II Interlaminar Fracture Toughness and Fatigue Delamination of CF/Epoxy Laminates with Self-Same Epoxy Interleaf. Int. J. Fatigue 2006, 28, 1154–1165. [Google Scholar] [CrossRef]
- Argüelles, A.; Vina, J.; Canteli, A.F.; Castrillo, M.A.; Bonhomme, J. Interlaminar Crack Initiation and Growth Rate in a Carbon–Fibre Epoxy Composite under Mode-I Fatigue Loading. Compos. Sci. Technol. 2008, 68, 2325–2331. [Google Scholar] [CrossRef]
- Thouless, M.; Parmigiani, J. Mixed-Mode Cohesive-Zone Models for Delamination and Deflection in Composites. In Proceedings of the 28th Risø International Symposium on Material Science: Interface Design of Polymer matrix Composites, Roskilde, Denmark, 3–6 September 2007. [Google Scholar]
- Evans, A.G.; Hutchinson, J.W. Effects of Non-Planarity on the Mixed Mode Fracture Resistance of Bimaterial Interfaces. Acta Metall. 1989, 37, 909–916. [Google Scholar] [CrossRef]
- Cao, H.C.; Thouless, M.D.; Evans, A.G. Residual Stresses and Cracking in Brittle Solids Bonded with a Thin Ductile Layer. Acta Metall. 1988, 36, 2037–2046. [Google Scholar] [CrossRef]
- Kurkin, E.; Kishov, E.; Chertykovtseva, V. Influence of Cohesive Zone Model Parameters of Polymer Lugs with Metal Bushing on Their Geometrical and Mass Characteristics. Aerosp. Syst. 2023, 7, 103–111. [Google Scholar] [CrossRef]
- Reis, J.P.; de Moura, M.F.S.F.; Moreira, R.D.F.; Silva, F.G.A. Pure Mode I and II Interlaminar Fracture Characterization of Carbon-Fibre Reinforced Polyamide Composite. Compos. Part B Eng. 2019, 169, 126–132. [Google Scholar] [CrossRef]
- Li, X.; Wang, B.; Xu, D.; Wang, B.; Dong, W.; Li, M. Super-High Bonding Strength of Polyphenylene Sulfide-Aluminum Alloy Composite Structure Achieved by Facile Molding Methods. Compos. Part B Eng. 2021, 224, 109204. [Google Scholar] [CrossRef]
- Mahaphasukwat, S.; Shimamoto, K.; Hayashida, S.; Sekiguchi, Y.; Sato, C. Mode I Critical Fracture Energy of Adhesively Bonded Joints between Glass Fiber Reinforced Thermoplastics. Appl. Adhes. Sci. 2015, 3, 4. [Google Scholar] [CrossRef]
- Duda, S.; Smolnicki, M.; Osiecki, T.; Lesiuk, G. Determination of Fracture Energy (Mode I) in the Inverse Fiber Metal Laminates using Experimental–Numerical Approach. Int. J. Fract. 2022, 234, 213–222. [Google Scholar] [CrossRef]
- Matinmanesh, A.; Li, Y.; Clarkin, O.; Zalzal, P.; Schemitsch, E.H.; Towler, M.R.; Papini, M. Quantifying the Mode II Critical Strain Energy Release Rate of Borate Bioactive Glass Coatings on Ti6Al4V Substrates. J. Mech. Behav. Biomed. Mater. 2017, 75, 212–221. [Google Scholar] [CrossRef]
- Tsokanas, P.; Loutas, T.; Nijhuis, P. Interfacial Fracture Toughness Assessment of a New Titanium–CFRP Adhesive Joint: An Experimental Comparative Study. Metals 2020, 10, 699. [Google Scholar] [CrossRef]
- Kurkin, E.I.; Spirina, M.O.; Espinosa Barcenas, O.U.; Kurkina, E.V. Calibration of the PA6 Short-Fiber Reinforced Material Model for 10% to 30% Carbon Mass Fraction Mechanical Characteristic Prediction. Polymers 2022, 14, 1781. [Google Scholar] [CrossRef] [PubMed]
- ISO-527-2-2012; Plastics. Determination of Tensile Properties. International Standard: Geneva, Switzerland. Available online: https://www.iso.org/standard/56046.html (accessed on 8 March 2024).
- Gamma-Plast UPA 6 30 M. Available online: https://gamma-plast.ru/poliamid/uglenapolnenniy/poliamid-upa-6-30-m/ (accessed on 8 March 2024).
- ZwickRoell LP. Available online: https://www.zwickroell.com/ru/produkcija/staticheskie-ispytatelnye-mashiny/universalnye-mashiny-dlja-staticheskikh-ispytanii/allroundline/ (accessed on 8 March 2024).
- Alfano, G.; Crisfield, M.A. Finite element interface models for the delamination analysis of laminated composites: Mechanical and computational issues. Int. J. Numer. Methods Eng. 2001, 50, 1701–1736. [Google Scholar] [CrossRef]
- ASTM D7905/D7905M-19e1; Standard Test Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites. ASTM International: West Conshohocken, PA, USA, 2019. [CrossRef]
- GOST 4784-97; Aluminium and Wrought Aluminium Alloys. Grades, Standartinform: Moscow, Russia, 2009.
- Aluminum 2024-T4; 2024-T351. Available online: https://www.matweb.com/search/datasheet_print.aspx?matguid=67d8cd7c00a04ba29b618484f7ff7524 (accessed on 2 May 2024).
- SHIMADZU. Available online: https://www.shimadzu.com/an/products/materials-testing/fatigue-testingimpact-testing/ehf-e-series/index.html (accessed on 8 March 2024).
- Negri Bossi: Global Injection Moulding Machine Supplier. Available online: https://www.negribossi.com/ (accessed on 8 March 2024).
- Akromid B3 ICF 30 Black. Available online: https://akro-plastic.com/en/product/akromid-b3-icf-30-schwarz-5119-de (accessed on 8 March 2024).
- Cross, M.M. Rheology of non-Newtonian fluids: A New flow equation for pseudo-plastic systems. J. Colloid Sci. 1965, 20, 417–437. [Google Scholar] [CrossRef]
- Digimat, M.F. User’s Guide. Available online: https://help-be.hexagonmi.com/bundle/Digimat_2023.1_MF_User_Guide/raw/resource/enus/Digimat_2023.1_MF_User_Guide.pdf (accessed on 2 May 2024).
- Van Hattum, F.W.J.; Bernardo, C.A. A model to predict the strength of short fiber composites. Polym. Compos. 1999, 20, 524–533. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Laser power, W | 240 |
Scanning speed, mm/s | 800 |
Scanning step, mm | 0.09 |
Layer thickness, μm | 50 |
Surface | Ra, μm | CV, % |
---|---|---|
Vibratory finishing | 2.66 | 24.6 |
Sandblasting | 8.79 | 24.9 |
SLM | 10.02 | 17.9 |
Surface | F max, N | CV, % | F max, N | CV, % |
---|---|---|---|---|
S-Type | M-Type | |||
Vibratory finishing | 4886 | 6.96 | 7457 | 6.54 |
Sandblasting | 5186 | 3.39 | 7302 | 5.10 |
SLM | 5429 | 1.63 | 7722 | 1.73 |
Ribbing | 6029 | 1.24 | 8388 | 2.48 |
Without bushing | 5008 | 1.72 | 7551 | 6.71 |
Surface | F max, N | |
---|---|---|
S-Type | M-Type | |
Vibratory finishing | 4741 | 6386 |
Sandblasting | 6344 | 8052 |
SLM | 7260 | 9220 |
Ribbing | 7969 | 9160 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sedelnikov, A.; Kurkin, E.; Smelov, V.; Chertykovtseva, V.; Alekseev, V.; Gavrilov, A.; Kishov, E.; Zvyagincev, M.; Chernyakin, S. Short Fiber-Reinforced Polymer Polyamide 6 Lugs and Selective Laser-Melted Ti-6Al-4V Bushing Contact Cohesive Zone Model Mode II Parameters’ Evaluation. Computation 2024, 12, 105. https://doi.org/10.3390/computation12050105
Sedelnikov A, Kurkin E, Smelov V, Chertykovtseva V, Alekseev V, Gavrilov A, Kishov E, Zvyagincev M, Chernyakin S. Short Fiber-Reinforced Polymer Polyamide 6 Lugs and Selective Laser-Melted Ti-6Al-4V Bushing Contact Cohesive Zone Model Mode II Parameters’ Evaluation. Computation. 2024; 12(5):105. https://doi.org/10.3390/computation12050105
Chicago/Turabian StyleSedelnikov, Andry, Evgenii Kurkin, Vitaliy Smelov, Vladislava Chertykovtseva, Vyacheslav Alekseev, Andrey Gavrilov, Evgenii Kishov, Maksim Zvyagincev, and Sergey Chernyakin. 2024. "Short Fiber-Reinforced Polymer Polyamide 6 Lugs and Selective Laser-Melted Ti-6Al-4V Bushing Contact Cohesive Zone Model Mode II Parameters’ Evaluation" Computation 12, no. 5: 105. https://doi.org/10.3390/computation12050105
APA StyleSedelnikov, A., Kurkin, E., Smelov, V., Chertykovtseva, V., Alekseev, V., Gavrilov, A., Kishov, E., Zvyagincev, M., & Chernyakin, S. (2024). Short Fiber-Reinforced Polymer Polyamide 6 Lugs and Selective Laser-Melted Ti-6Al-4V Bushing Contact Cohesive Zone Model Mode II Parameters’ Evaluation. Computation, 12(5), 105. https://doi.org/10.3390/computation12050105