Bayesian Nonparametric Modeling of Categorical Data for Information Fusion and Causal Inference †
Abstract
:1. Introduction
- By introducing latent variables and sparsity inducing priors, a flexible and parsimonious model is developed for fusion of correlated information from heterogeneous sources (e.g., sensors of possibly different modalities), which can be used to improve the performance of sequential classification tasks.
- Validation of the above concept with experimental data, generated from a swirl-stabilized lean-premixed laboratory-scale combustor [14], for real-time detection of thermoacoustic instabilities.
- Testing of the underlying algorithm with public economics data to infer the causal relationship between two categorical time series.
2. Model Development
- 1.
- θ Granger-causes y but not the vice versa;
- 2.
- y Granger-causes θ but not the vice versa;
- 3.
- θ and y Granger-cause each other;
- 4.
- θ does not Granger-cause y and vice versa.
2.1. Conditional Tensor Factorization
2.2. Bayesian Nonparametric Modeling
- Soft clustering for each one of the predictors is implemented following Equation (6). This allows for inheritance of statistical strengths across different categories.
- The distribution of variable is determined by a probability tensor of reduced order, following Equation (7).
- In order to capture the interactions among different predictors, class assignment variables are used. They work in an implicit and parsimonious way by allowing the latent populations with the index of to be shared across various state combinations of predictors.
3. Estimation and Inference
3.1. Posterior Computation
Algorithm 1 Gibbs sampling for the proposed method |
|
3.2. Bayesian Factor and Hypothesis Testing
4. Sequential Classification
5. Numerical Example
6. Validation with Experimental Data: The Combustor Apparatus
6.1. Background and Description of the Experimental Procedure
6.2. Training Phase
6.3. Granger Causality
6.4. Sequential Classification
7. Validation with Economics Data
8. Summary, Conclusions, and Future Work
- Variational inference algorithm development for the proposed model [37].
- Exploration of an unknown physical quantity that may cause the appearance of mutual interactions between pressure and chemiluminescence measurements.
- Investigation of the empirical performance of the proposed approach utilizing extensive simulation studies.
Author Contributions
Acknowledgments
Conflicts of Interest
Nomenclature of Pertinent Parameters
a | Hyperparameter of prior on probability vector |
b | Hyperparameter of prior on probability vector |
Number of categories of the jth predictor | |
ith class of dynamical systems | |
Number of time-lags of variable y | |
Number of time-lags of variable | |
Number of clusters formed by | |
Dimension of the jth mixture probability vector | |
Vector | |
L | Number of truncations in a Pitman-Yor process |
N | Number of iterations in Algorithm 1 |
q | Number of predictors |
s | Realization of a latent allocation-class variable |
T | Number of pairs of variables and predictors |
jth latent allocation-class variables at time t | |
jth latent allocation-class variables | |
Latent allocation-class variables at time t | |
Latent allocation-class variables | |
Variable y at time t | |
Variables | |
jth predictor at time t | |
jth predictors | |
Predictors at time t | |
Predictors | |
Hyperparameter of prior on | |
Hyperparameter of prior on | |
Variable at time t | |
Threshold | |
Probability vector | |
Set of predictors | |
Conditional probability tensor | |
Probability vector | |
Sequence | |
Hyperparameter of prior on | |
Probability vector | |
Collection | |
Time-invariant spatial variables for kth experiment | |
Mixture probability vector | |
Mixture probability matrix | |
Mixture probability tensor | |
Pertinent Acronyms | |
BF | Bayes Factor |
Beta | Beta Distribution |
Dir | Uniform Dirichlet Distribution |
HOSVD | Higher order singular value decomposition |
Mult | Multinomial Distribution |
ROC | Receiver operating characteristic |
References
- Sarkar, S.; Virani, N.; Ray, A.; Yasar, M. Sensor fusion for fault detection and classification in distributed physical processes. Phys. C Supercond. 2014, 1, 369–373. [Google Scholar] [CrossRef]
- Kónya, L. Exports and growth: Granger causality analysis on oecd countries with a panel data approach. Econ. Model. 2006, 23, 978–992. [Google Scholar] [CrossRef]
- Seth, A.K.; Barrett, A.B.; Barnett, L. Granger causality analysis in neuroscience and neuroimaging. J. Neurosci. 2015, 35, 3293–3297. [Google Scholar] [CrossRef] [PubMed]
- Annaswamy, A.M.; Ghoniem, A.F. Active control of combustion instability: Theory and practice. IEEE Control Syst. 2002, 22, 37–54. [Google Scholar] [CrossRef]
- Fujimaki, R.; Nakata, T.; Tsukahara, H.; Sato, A.; Yamanishi, K. Mining abnormal patterns from heterogeneous time-series with irrelevant features for fault event detection. Stat. Anal. Data Min. 2009, 2, 1–17. [Google Scholar] [CrossRef]
- Virani, N.; Marcks, S.; Sarkar, S.; Mukherjee, K.; Ray, A.; Phoha, S. Dynamic data driven sensor array fusion for target detection and classification. Proc. Comput. Sci. 2013, 18, 2046–2055. [Google Scholar] [CrossRef]
- Iyengar, S.; Varshney, P.; Damarla, T. A parametric copula-based framework for hypothesis testing using heterogeneous data. IEEE Trans. Signal Process. 2011, 59, 2308–2319. [Google Scholar] [CrossRef]
- Spirtes, P. Introduction to causal inference. J. Mach. Learn. Res. 2010, 11, 1643–1662. [Google Scholar]
- Eichler, M. Causal inference in time series analysis. Causal. Stat. Perspect. Appl. 2012, 327–354. [Google Scholar] [CrossRef]
- Athey, S. Machine learning and causal inference for policy evaluation. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, Australia, 10–13 August 2015; pp. 5–6. [Google Scholar]
- Granger, C.W. Causality, cointegration, and control. J. Econ. Dyn. Control 1988, 12, 551–559. [Google Scholar] [CrossRef]
- Tank, A.; Fox, E.; Shojaie, A. Granger causality networks for categorical time series. arXiv, 2016; arXiv:1706.0278. [Google Scholar]
- Kass, R.E.; Raftery, A.E. Bayes factors. J. Am. Stat. Assoc. 1995, 90, 773–795. [Google Scholar] [CrossRef]
- Kim, K.; Lee, J.; Quay, B.; Santavicca, D. Response of partially premixed flames to acoustic velocity and equivalence ratio perturbations. Combust. Flame 2010, 157, 1731–1744. [Google Scholar] [CrossRef]
- Yang, Y.; Dunson, D.B. Bayesian conditional tensor factorizations for high-dimensional classification. J. Am. Stat. Assoc. 2016, 111, 656–669. [Google Scholar] [CrossRef]
- Wilks, S. Mathematical Statistics; John Wiley: New York, NY, USA, 1963. [Google Scholar]
- Ferguson, T.S. A Bayesian analysis of some nonparametric problems. Ann. Stat. 1973, 1, 209–230. [Google Scholar] [CrossRef]
- Ishwaran, H.; James, L.F. Gibbs sampling methods for stick-breaking priors. J. Am Stat. Assoc. 2001, 96, 161–173. [Google Scholar] [CrossRef]
- Green, P.J. Reversible jump markov chain monte carlo computation and Bayesian model determination. Biometrika 1995, 82, 711–732. [Google Scholar] [CrossRef]
- Pitman, J. Exchangeable and partially exchangeable random partitions. Probab. Theory Relat. Fields 1995, 102, 145–158. [Google Scholar] [CrossRef]
- Miller, J.W.; Harrison, M.T. Mixture models with a prior on the number of components. arXiv, 2015; arXiv:1502.06241. [Google Scholar]
- Van Dyk, D.A.; Park, T. Partially collapsed gibbs samplers: Theory and methods. J. Am. Stat. Assoc. 2008, 103, 790–796. [Google Scholar] [CrossRef]
- Akaike, H. Factor analysis and aic. Psychometrika 1987, 52, 317–332. [Google Scholar] [CrossRef]
- Poor, H.V. An Introduction to Signal Detection and Estimation; Springer Science & Business Media: Heidelberg/Berlin, Germany, 2013. [Google Scholar]
- Lieuwen, T.; Torres, H.; Johnson, C.; Zinn, B.T. A mechanism of combustion instability in lean premixed gas turbine combustors. In ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition; American Society of Mechanical Engineers: New York, NY, USA, 1999. [Google Scholar]
- Dowling, A.; Hubbard, S. Instability in lean premixed combustors. Proc. Inst. Mech. Eng. Part A J. Power Energy 2000, 214, 317–332. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, V. Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog. Energy Combust. Sci. 2009, 35, 293–364. [Google Scholar] [CrossRef]
- Jha, D.; Virani, N.; Reimann, J.; Srivastav, A.; Ray, A. Symbolic analysis-based reduced order Markov modeling of time series data. Signal Process. 2018, 149, 68–81. [Google Scholar] [CrossRef]
- Sarkar, S.; Ray, A.; Mukhopadhyay, A. Sen, S. Dynamic data-driven prediction of lean blowout in a swirl-stabilized combustor. Int. J. Spray Combust. Dyn. 2015, 7, 209–241. [Google Scholar] [CrossRef]
- Abarbanel, H.D.; Brown, R.; Sidorowich, J.J.; Tsimring, L.S. The analysis of observed chaotic data in physical systems. Rev. Mod. Phys. 1993, 65, 1331. [Google Scholar] [CrossRef]
- Rajagopalan, V.; Ray, A. Symbolic time series analysis via wavelet-based partitioning. Signal Process. 2006, 86, 3309–3320. [Google Scholar] [CrossRef]
- Mukherjee, K.; Ray, A. State splitting and merging in probabilistic finite state automata for signal representation and analysis. Signal Process. 2014, 104, 105–119. [Google Scholar] [CrossRef]
- Blanchard, O.J.; Fischer, S. Lectures on Macroeconomics; MIT Press: Cambridge, UK, 1989. [Google Scholar]
- Eichler, M. Granger causality and path diagrams for multivariate time series. J. Econ. 2007, 137, 334–353. [Google Scholar] [CrossRef]
- Österholm, P. The Taylor rule: A spurious regression? Bull. Econ. Res. 2005, 57, 217–247. [Google Scholar] [CrossRef]
- Beim Graben, P. Estimating and improving the signal-to-noise ratio of time series by symbolic dynamics. Phys. Rev. E 2001, 64, 51104. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, M.D.; Blei, D.M.; Wang, C.; Paisley, J. Stochastic variational inference. J. Mach. Learn. Res. 2013, 14, 1303–1347. [Google Scholar]
- Rabiner, L. A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 1989, 77, 267–286. [Google Scholar] [CrossRef]
- Schreiber, T. Measuring Information Transfer. Phys. Rev. Lett. 2000, 85, 461–464. [Google Scholar] [CrossRef] [PubMed]
0 | 0 | 0 | 0.20 | 0.80 |
1 | 0 | 0 | 0.75 | 0.25 |
0 | 1 | 0 | 0.70 | 0.30 |
1 | 1 | 0 | 0.35 | 0.65 |
0 | 0 | 1 | 0.40 | 0.60 |
1 | 0 | 1 | 0.38 | 0.62 |
0 | 1 | 1 | 0.33 | 0.67 |
1 | 1 | 1 | 0.71 | 0.29 |
0 | 0 | 0 | 0 | 0.40 | 0.60 |
1 | 0 | 0 | 0 | 0.65 | 0.35 |
0 | 1 | 0 | 0 | 0.70 | 0.30 |
1 | 1 | 0 | 0 | 0.40 | 0.60 |
0 | 0 | 1 | 0 | 0.50 | 0.50 |
1 | 0 | 1 | 0 | 0.47 | 0.53 |
0 | 1 | 1 | 0 | 0.33 | 0.67 |
1 | 1 | 1 | 0 | 0.69 | 0.31 |
0 | 0 | 0 | 1 | 0.45 | 0.55 |
1 | 0 | 0 | 1 | 0.75 | 0.25 |
0 | 1 | 0 | 1 | 0.30 | 0.70 |
1 | 1 | 0 | 1 | 0.50 | 0.50 |
0 | 0 | 1 | 1 | 0.75 | 0.25 |
1 | 0 | 1 | 1 | 0.66 | 0.34 |
0 | 1 | 1 | 1 | 0.65 | 0.35 |
1 | 1 | 1 | 1 | 0.20 | 0.80 |
Null Hypothesis | Bayes Factor |
---|---|
does not Granger-cause y | 0.43 |
y does not Granger-cause | Infinity |
Parameters | Values | |
---|---|---|
Variables | Equivalence Ratio | 0.525, 0.538, 0.575, 0.625 |
Pilot Fuel (percent) | 0–9% (0.5% increment) | |
Fixed Conditions | Inlet Temperature | |
Inlet Velocity | 40 m/s | |
Combustor Length | 0.625 m |
Null Hypothesis | Operating Condition | |
---|---|---|
does not Granger-cause y | Stable | Infinity |
y does not Granger-cause | Stable | Infinity |
does not Granger-cause y | Unstable | Infinity |
y does not Granger-cause | Unstable | Infinity |
Null Hypothesis | Bayes Factor |
---|---|
US CPI does not Granger-cause LIBOR | 7.29 |
LIBOR does not Granger-cause US CPI | Infinity |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, S.; Fu, Y.; Ray, A. Bayesian Nonparametric Modeling of Categorical Data for Information Fusion and Causal Inference. Entropy 2018, 20, 396. https://doi.org/10.3390/e20060396
Xiong S, Fu Y, Ray A. Bayesian Nonparametric Modeling of Categorical Data for Information Fusion and Causal Inference. Entropy. 2018; 20(6):396. https://doi.org/10.3390/e20060396
Chicago/Turabian StyleXiong, Sihan, Yiwei Fu, and Asok Ray. 2018. "Bayesian Nonparametric Modeling of Categorical Data for Information Fusion and Causal Inference" Entropy 20, no. 6: 396. https://doi.org/10.3390/e20060396