Centrality and System Size Dependence among Freezeout Parameters and the Implications for EOS and QGP in High-Energy Collisions
Abstract
:1. Introduction
2. The Method and Formalism
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heinz, U.W. Concepts of Heavy-Ion Physics. arXiv 2004, arXiv:hep-ph/0407360. [Google Scholar] [CrossRef]
- Florkowski, W. Basic phenomenology for relativistic heavy-ion collisions. Acta Phys. Polon. B 2014, 45, 2329–2354. [Google Scholar] [CrossRef]
- Braun-Munzinger, P.; Wambach, J. The Phase Diagram of Strongly-Interacting Matter. Rev. Mod. Phys. 2009, 81, 1031–1050. [Google Scholar] [CrossRef]
- Adams, J.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J.; Anderson, B.D.; Arkhipkin, D.; Averichev, G.S.; Badyal, S.K.; Bai, Y.; Balewski, J.; et al. Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions. Nucl. Phys. A 2005, 757, 102–183. [Google Scholar] [CrossRef]
- Adcox, K.; Adler, S.S.; Afanasiev, S.; Aidala, C.; Ajitan, N.N.; Akiba, Y.; Al-Jamel, A.; Alexander, J.; Amirikas, R.; Aoki, K.; et al. Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration. Nucl. Phys. A 2005, 757, 184–283. [Google Scholar] [CrossRef]
- Chatrchyan, S.; Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; et al. Measurement of Higher-Order Harmonic Azimuthal Anisotropy in PbPb Collisions at sNN = 2.76 TeV. Phys. Rev. C 2014, 89, 044906. [Google Scholar] [CrossRef]
- Aamodt, K.; Abelev, B.; Quintana, A.A.; Adamova, D.; Adare, A.M.; Aggarwal, M.M.; Rinella, G.A.; Agocs, A.G.; Agostinelli, A.; Salazar, S.A.; et al. Higher harmonic anisotropic flow measurements of charged particles in Pb-Pb collisions at sNN=2.76 TeV. Phys. Rev. Lett. 2011, 107, 032301. [Google Scholar] [CrossRef] [PubMed]
- Aad, G.; Abbott, B.; Abdallah, J.; Khalek, S.A.; Abdelalim, A.A.; Abdesselam, A.; Abi, B.; Abolins, M.; AbouZeid, O.S.; Abramowicz, H.; et al. Measurement of the azimuthal anisotropy for charged particle production in sNN=2.76 TeV lead-lead collisions with the ATLAS detector. Phys. Rev. C 2012, 86, 014907. [Google Scholar] [CrossRef]
- Borsanyi, S.; Fodor, Z.; Hoelbling, C.; Katz, S.D.; Krieg, S.; Szabo, K.K. Full result for the QCD equation of state with 2 + 1 flavors. Phys. Lett. B 2014, 730, 99–104. [Google Scholar] [CrossRef]
- Bazavov, A.; Bhattacharya, T.; Cheng, M.; Christ, N.H.; DeTar, C.; Ejiri, S.; Gottlieb, S.; Gupta, R.; Heller, U.M.; Huebner, K.; et al. Equation of state and QCD transition at finite temperature. Phys. Rev. D 2009, 80, 014504. [Google Scholar] [CrossRef]
- Bazavov, A.; Bhattacharya, T.; DeTar, C.; Ding, H.T.; Gottlieb, S.; Gupta, R.; Hegde, P.; Heller, U.M.; Karsch, F.; Laermann, E.; et al. Equation of state in (2 + 1)-flavor QCD. Phys. Rev. D 2014, 90, 094503. [Google Scholar] [CrossRef]
- Borsanyi, S.; Endrodi, G.; Fodor, Z.; Jakovac, A.; Katz, S.D.; Krieg, S.; Ratti, C.; Szabo, K.K. The QCD equation of state with dynamical quarks. J. High Energy Phys. 2010, 1011, 077. [Google Scholar] [CrossRef]
- Fodor, Z.; Katz, S.D. Available online: https://ui.adsabs.harvard.edu/abs/2009arXiv0908.3341F (accessed on 28 September 2023).
- Bzdak, A.; Esumi, S.; Koch, V.; Liao, J.; Stephanov, M.; Xu, N. Mapping the Phases of Quantum Chromodynamics with Beam Energy Scan. Phys. Rept. 2020, 853, 1–87. [Google Scholar] [CrossRef]
- Agnello, M.; Antinori, F.; Appelshäuser, H.; Arnaldi, R.; Bailhache, R.; Barioglio, L.; Beole, S.; Beraudo, A.; Bianchi, A.; Bianchi, L.; et al. Study of hard and electromagnetic processes at CERN-SPS energies: An investigation of the high-μB region of the QCD phase diagram with NA60+. JPS Conf. Proc. 2021, 33, 011113. [Google Scholar] [CrossRef]
- Lewicki, M.P.; Turko, L. NA61/SHINE shining more light on the onset of deconfinement. arXiv 2020, arXiv:2002.00631. [Google Scholar]
- Geraksiev, N.S.; the NICA/MPD Collaboration. The physics programme for the multi-purpose detector. J. Phys. Conf. Ser. 2019, 1390, 012121. [Google Scholar] [CrossRef]
- Senger, P. Exploring Cosmic Matter in the Laboratory—The Compressed Baryonic Matter Experiment at FAIR. Particles 2019, 2, 499–510. [Google Scholar] [CrossRef]
- Ablyazimov, T.; Abuhoza, A.; Adak, R.P.; Adamczyk, M.; Agarwal, K.; Aggarwal, M.M.; Ahammed, Z.; Ahmad, F.; Ahmad, N.; Ahmad, S.; et al. Challenges in QCD matter physics –The scientific programme of the Compressed Baryonic Matter experiment at FAIR. Eur. Phys. J. A 2017, 53, 60. [Google Scholar] [CrossRef]
- Karsch, F. Lattice results on QCD thermodynamics. In Proceedings of the 15th International Conference on Ultrarelativistic Nucleus Nucleus Collisions, Quark Matter 2001, Stony Brook, NY, USA, 15–20 January 2001; Hallman, T.J., Kharzeev, D.E., Mitchell, J.T., Ullrich, T.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2001; Volume 698, pp. 199–208. [Google Scholar]
- Heinz, U. The little bang: Searching for quark-gluon matter in relativistic heavy-ion collisions. Nucl. Phys. A 2001, 685, 414. [Google Scholar] [CrossRef]
- Urmossy, K.; Jakovac, A. Scale dependence of the q and T parameters of the Tsallis distribution in the process of jet fragmentation. Eur. Phys. J. A 2023, 59, 122. [Google Scholar] [CrossRef]
- Singh, A.K.; Akhil, A.; Tiwari, S.K.; Pareek, P. Nuclear Modification Factor in Pb-Pb and p-Pb collisions at at LHC energies using Boltzmann Transport Equation with Tsallis Blast Wave Description. arXiv 2023, arXiv:2309.17071. [Google Scholar]
- Wang, R.Q.; Li, Y.H.; Song, J.; Shao, F.L. Production properties of deuterons, helions and tritons via an analytical nucleon coalescence method in Pb-Pb collisions at . arXiv 2023, arXiv:2309.16296. [Google Scholar]
- Geng, Y.F.; Li, B.C. Properties of the particle distribution in Pb–Pb collisions at and . Front. Phys. 2023, 11, 1257937. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, F.H. Excitation function of initial temperature of heavy flavor quarkonium emission source in high energy collisions. Adv. High Energy Phys. 2020, 2020, 5031494. [Google Scholar] [CrossRef]
- Waqas, M.; Peng, G.X.; Ajaz, M.; Haj, A.A.K.I.; Wazir, Z.; Li, L.L. Extraction of different temperatures and kinetic freeze-out volume in high energy collisions. J. Phys. G 2022, 49, 095102. [Google Scholar] [CrossRef]
- Badshah, M.; Waqas, M.; Khubrani, A.M.; Ajaz, M. Systematic analysis of the pp collisions at LHC energies with Tsallis function. EPL 2023, 141, 64002. [Google Scholar] [CrossRef]
- Waqas, M.; Ismail, A.A.K.H.; Ajaz, M.; AbdelKader, A. Excitation Function of Kinetic Freeze-Out Parameters at 6.3, 17.3, 31, 900 and 7000 GeV. Universe 2022, 8, 138. [Google Scholar] [CrossRef]
- Li, L.L.; Waqas, M.; Ajaz, M.; Khubrani, A.M.; Yao, H.; Khan, M.A. Analyses of pp, Cu–Cu, Au–Au and Pb–Pb Collisions by Tsallis-Pareto Type Function at RHIC and LHC Energies. Entropy 2022, 24, 1219. [Google Scholar] [CrossRef]
- Waqas, M.; Liu, F.H. Centrality dependence of kinetic freeze-out temperature and transverse flow velocity in high energy nuclear collisions. Indian J. Phys. 2022, 96, 1217–1235. [Google Scholar] [CrossRef]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Statist. Phys. 1988, 52, 479. [Google Scholar] [CrossRef]
- Tsallis, C. Enthusiasm and Skepticism: Two Pillars of Science—A Nonextensive Statistics Case. Physics 2022, 4, 609. [Google Scholar] [CrossRef]
- Tsallis, C. Nonadditive entropy: The concept and its use. Eur. Phys. J. A 2009, 40, 257. [Google Scholar] [CrossRef]
- Cleymans, J.; Lykasov, G.I.; Parvan, A.S.; Sorin, A.S.; Teryaev, O.V.; Worku, D. Systematic properties of the Tsallis Distribution: Energy Dependence of Parameters in High-Energy p p Collisions. Phys. Lett. B 2013, 723, 351. [Google Scholar] [CrossRef]
- Wilk, G.; Wlodarczyk, Z. Interpretation of the Nonextensivity Parameter q in Some Applications of Tsallis Statistics and Lévy Distributions. Phys. Rev. Lett. 2000, 84, 2770. [Google Scholar] [CrossRef] [PubMed]
- Khandai, P.K.; Sett, P.; Shukla, P.; Singh, V. System size dependence of hadron pT spectra in p+p and Au+Au collisions at . J. Phys. G 2014, 41, 025105. [Google Scholar] [CrossRef]
- Zheng, H.; Zhu, L. Comparing the Tsallis Distribution with and without Thermodynamical Description in p + p Collisions. Adv. High Energy Phys. 2016, 2016, 9632126. [Google Scholar] [CrossRef]
- Cleymans, J.; Worku, D. The Tsallis Distribution in Proton-Proton Collisions at s = 0.9 TeV at the LHC. J. Phys. G 2012, 39, 025006. [Google Scholar] [CrossRef]
- Cleymans, J. On the Use of the Tsallis Distribution at LHC Energies. J. Phys. Conf. Ser. 2017, 779, 012079. [Google Scholar] [CrossRef]
- Olimov, K.K.; Liu, F.H.; Musaev, K.A.; Olimov, K.; Tukhtaev, B.J.; Yuldashev, B.S.; Saidkhanov, N.S.; Umarov, K.I.; Gulamov, K.G. Multiplicity dependencies of midrapidity transverse momentum spectra of identified charged particles in p + p collisions at (s)1/2 = 13 TeV at LHC. Int. J. Mod. Phys. A 2021, 36, 2150149. [Google Scholar] [CrossRef]
- Ajaz, M.; Haj Ismail, A.A.K.; Waqas, M.; Suleymanov, M.; AbdelKader, A.; Suleymanov, R. Pseudorapidity dependence of the bulk properties of hadronic medium in pp collisions at 7 TeV. Sci. Rep. 2022, 12, 8142. [Google Scholar] [CrossRef]
- Hagedorn, R. Multiplicities, pT Distributions and the Expected Hadron → Quark-Gluon Phase Transition. Riv. Nuovo Cim. 1983, 6N10, 1–50. [Google Scholar] [CrossRef]
- Odorico, R. Does a transverse energy trigger actually trigger on large p(t) jets? Phys. Lett. B 1982, 118, 151–154. [Google Scholar] [CrossRef]
- Biyajima, M.; Mizoguchi, T.; Suzuki, N. Analyses of whole transverse momentum distributions in pp¯ and pp collisions by using a modified version of Hagedorn’s formula. Int. J. Mod. Phys. A 2017, 32, 1750057. [Google Scholar] [CrossRef]
- Arnison, G.; Astbury, A.; Aubert, B.; Bacci, C.; Bernabei, R.; Bezaguet, A.; Böck, R.; Bowcock, T.J.V.; Calvetti, M.; Carroll, T.; et al. Transverse Momentum Spectra for Charged Particles at the CERN Proton anti-Proton Collider. Phys. Lett. B 1982, 118, 167–172. [Google Scholar] [CrossRef]
- Particle Data Group; Workman, R.L. Review of Particle Physics. Prog. Theor. Exp. Phys. 2022, 8, 083C01. [Google Scholar] [CrossRef]
- Olimov, K.K.; Lebedev, I.A.; Fedosimova, A.I.; Liu, F.H.; Dmitriyeva, E.; Musaev, K.A.; Olimov, K.; Yuldashev, B.S. Correlations among parameters of the Tsallis distribution and Hagedorn function with embedded transverse flow in proton–proton collisions at (s)1/2 = 7 and 13 TeV. Eur. Phys. J. Plus 2023, 138, 414. [Google Scholar] [CrossRef]
- Adler, S.S.; Afanasiev, S.; Aidala, C.; Ajitan, N.N.; Akiba, Y.; Alex, E.J.; Amirikas, R.; Aphecetche, L.; Aronson, S.H.; Averbeck, R.; et al. Identified charged particle spectra and yields in Au+Au collisions at S(NN)**1/2 = 200-GeV. Phys. Rev. C 2004, 69, 034909. [Google Scholar] [CrossRef]
- Arsene, I.C.; Bearden, I.G.; Beavis, D.; Bekele, S.; Besliu, C.; Budick, B.; Bøggild, H.; Chasman, C.; Christensen, C.H.; Christiansen, P.; et al. Rapidity and centrality dependence of particle production for identified hadrons in Cu+Cu collisions at . Phys. Rev. C 2016, 94, 014907. [Google Scholar] [CrossRef]
- Adare, A.; Afanasiev, S.; Aidala, C.; Ajitan, N.N.; Akiba, Y.; Al-Bataineh, H.; Alex, E.J.; Angerami, A.; Aoki, K.; Apadula, N.; et al. Spectra and ratios of identified particles in Au+Au and d+Au collisions at . Phys. Rev. C 2013, 88, 024906. [Google Scholar] [CrossRef]
- Adamczyk, L.; Adkins, J.K.; Agakishiev, G.; Aggarwal, M.M.; Ahammed, Z.; Ajitan, N.N.; Alekseev, I.; Anderson, D.M.; Aoyama, R.; Aparin, A.; et al. Bulk Properties of the Medium Produced in Relativistic Heavy-Ion Collisions from the Beam Energy Scan Program. Phys. Rev. C 2017, 96, 044904. [Google Scholar] [CrossRef]
- Wilk, G.; Wlodarczyk, Z. Consequences of temperature fluctuations in observables measured in high energy collisions. Eur. Phys. J. A 2012, 48, 161. [Google Scholar] [CrossRef]
Collision | Centrality | (GeV) | n | /dof | |||
---|---|---|---|---|---|---|---|
Au–Au | 0–5% | 31/25 | |||||
5–10% | 28/25 | ||||||
10–15% | 76/25 | ||||||
15–20% | 15.8/25 | ||||||
20–30% | 11/25 | ||||||
30–40% | 3.3/21 | ||||||
40–50% | 13.4/25 | ||||||
50–60% | 5.8/25 | ||||||
60–70% | 2/25 | ||||||
70–80% | 159/25 | ||||||
80–92% | 57/25 | ||||||
Cu–Cu | 0–10% | 1/10 | |||||
10–30% | 0.4/10 | ||||||
30–50% | 1/10 | ||||||
50–70% | 1.3/10 | ||||||
d–Au | 0–20% | 4/21 | |||||
20–40% | 7/23 | ||||||
40–60% | 3/21 | ||||||
60–88% | 7.2/21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waqas, M.; Haj Ismail, A.; Alrebdi, H.I.; Ajaz, M. Centrality and System Size Dependence among Freezeout Parameters and the Implications for EOS and QGP in High-Energy Collisions. Entropy 2023, 25, 1586. https://doi.org/10.3390/e25121586
Waqas M, Haj Ismail A, Alrebdi HI, Ajaz M. Centrality and System Size Dependence among Freezeout Parameters and the Implications for EOS and QGP in High-Energy Collisions. Entropy. 2023; 25(12):1586. https://doi.org/10.3390/e25121586
Chicago/Turabian StyleWaqas, Muhammad, Abd Haj Ismail, Haifa I. Alrebdi, and Muhammad Ajaz. 2023. "Centrality and System Size Dependence among Freezeout Parameters and the Implications for EOS and QGP in High-Energy Collisions" Entropy 25, no. 12: 1586. https://doi.org/10.3390/e25121586