Generating Tree-Level Harvest Predictions from Forest Inventories with Random Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Response and Predicting Attributes
2.3. Classification Trees
2.4. Random Forest
2.5. Plot Harvest Stratum Attribute
2.6. Harvest Probability Predictions for Sample Trees with Random Forests
2.7. Harvest Probability Predictions for Sample Trees with Generalized Linear Mixed Model
2.8. Prediction
2.9. Evaluation Criteria
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Level | Attribute | Range | Mean | SD |
---|---|---|---|---|
Plot-level | Plot-level standing volume (m³ over bark/ha) | 7.1–2137.7 | 433.3 | 234.7 |
Plot-level | Average DBH of trees on the plot (cm) | 7.0–100.4 | 33.1 | 12.5 |
Plot-level | Average age of trees on the plot (years) | 15.0–380.0 | 81.3 | 35.8 |
Plot-level | Slope (%) | 0–77.0 | 11.1 | 9.7 |
Plot-level | Site Index (m³ over bark/ha) | 2.0–21.0 | 10.4 | 4.1 |
Plot-level | Altitude (m above sea level) | 94.0–1370.0 | 554.7 | 214.0 |
Tree-level | Species share (%) | 0.0–1.0 | 0.7 | 0.3 |
Tree-level | F-rDiffDq (index) | −0.9–2.3 | 0.1 | 0.3 |
Tree-level | Diameter at breast height (DBH, cm) | 7–144.1 | 36.2 | 15.6 |
Tree-level | Tree height (m) | 3.2–49.7 | 26.1 | 7.4 |
Level | Attribute | Characteristics |
---|---|---|
Plot-level | Nature protected area | yes (126); no (5,558) |
Plot-level | Nature park | yes (2553); no (3,131) |
Plot-level | Harvest condition | favorable (4471); unfavorable (1,213) |
Plot-level | Ownership type | state (1353); community (2377); large private (640); medium private (636); small private (678) |
Plot-level | Plot type | conifer 1 (2004); conifer 2 (193); deciduous (1260); mixed 1 (1025); mixed 2 (1202) |
Tree-level | Harvest decision | yes (17,991); no (31,064) |
Tree-level | Dead | yes (108); no (48,947) |
Tree-level | Skidding damage | yes (10,016); no (39,039) |
Tree-level | Other stem damage | yes (3238); no (45,817) |
Tree-level | Beetle | yes (80); no (48,975) |
Tree-level | Fungus | yes (56); no (48,999) |
Tree-level | Pruned | yes (2814); no (46,241) |
Tree-level | Species (groups) | spruce (24,109); fir (4614); pine (4117); Douglas fir (1511); beech (8654); oak (2484); ash (1101); other deciduous (2465) |
Group | Species |
---|---|
Conifer 1 | Picea abies L. Karst; Abies alba Mill.; other Picea spp. |
Conifer 2 | Pinus sylvestris L.; Pseudotsuga menziesii (Mirb.); Larix decidua L.; Larix kaempferi (Lamb.) Carrière; Pinus nigra J.F.Arnold; other conifers |
Deciduous | Fagus sylvatica L.; Quercus petraea (Matt.) Liebl.; Fraxinus excelsior L.; Quercus robur L.; Acer pseudoplatanus L.; Carpinus betulus L.; Tilia spp.; Alnus glutinosa (L.) Gaertn.; Quercus rubra L.; Prunus avium L.; Betula pendula Roth; Populus nigra L.; Acer platanoides L.; Robinia pseudoacacia L.; Castanea sativa Mill.; Salix spp.; Acer campestre L.; Ulmus spp.; other deciduous |
Level | Attribute | Range | Mean | SD |
---|---|---|---|---|
Plot-level | Plot-level standing volume (m³ over bark/ha) | 6.3–2137.7 | 388.5 | 238.2 |
Plot-level | Average DBH of trees on the plot (cm) | 7.0–123.6 | 32.5 | 13.1 |
Plot-level | Average age of trees on the plot (years) | 15.0–380.0 | 80.2 | 37.1 |
Plot-level | Slope (%) | 0–77.0 | 12.0 | 10.4 |
Plot-level | Site Index (m³ over bark/ha) | 2.0–21.0 | 10.0 | 4.2 |
Plot-level | Altitude (m above sea level) | 90.0–1370.0 | 557.3 | 220.4 |
Level | Attribute | Characteristics |
---|---|---|
Plot-level | Harvest decision | yes (5684); no (3313) |
Plot-level | Nature protected area | yes (296); no (8701) |
Plot-level | Nature park | yes (4189); no (4808) |
Plot-level | Harvest condition | favorable (6715); unfavorable (2282) |
Plot-level | Ownership type | state (2116); community (3570); large private (949); medium private (1069); small private (1293) |
Plot-level | Plot type | conifer 1 (2833); conifer 2 (339); deciduous (2390); mixed 1 (1477); mixed 2 (1958) |
References
- Fischer, C.; Gasparini, P.; Nylander, M.; Redmond, J.; Hernandez, L.; Brändli, U.-B.; Pastor, A.; Rizzo, M.; Alberdi, I. Joining Criteria for Harmonizing European Forest Available for Wood Supply Estimates. Case Studies from National Forest Inventories. Forests 2016, 7, 104. [Google Scholar] [CrossRef]
- Tomppo, E.; Schadauer, K.; McRoberts, R.E.; Gschwantner, T.; Gabler, K.; Ståhl, G. Introduction. In National Forest Inventories; Tomppo, E., Gschwantner, T., Lawrence, M., McRoberts, R.E., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 1–18. [Google Scholar]
- Barreiro, S.; Schelhaas, M.-J.; Kändler, G.; Antón-Fernández, C.; Colin, A.; Bontemps, J.-D.; Alberdi, I.; Condés, S.; Dumitru, M.; Ferezliev, A.; et al. Overview of methods and tools for evaluating future woody biomass availability in European countries. Ann. For. Sci. 2016, 73, 823–837. [Google Scholar] [CrossRef] [Green Version]
- Kilham, P.; Kändler, G.; Hartebrodt, C.; Stelzer, A.-S.; Schraml, U. Designing Wood Supply Scenarios from Forest Inventories with Stratified Predictions. Forests 2018, 9, 77. [Google Scholar] [CrossRef]
- Rock, J.; Gerber, K.; Klatt, S.; Oehmichen, K. The WEHAM 2012 “baseline scenario”: Center line or guardrail? Forstarchiv 2016, 87, 66–69. [Google Scholar] [CrossRef]
- Antón-Fernández, C.; Astrup, R. Empirical harvest models and their use in regional business-as-usual scenarios of timber supply and carbon stock development. Scand. J. For. Res. 2012, 27, 379–392. [Google Scholar] [CrossRef]
- Fridman, J.; Ståhl, G. A Three-step Approach for Modelling Tree Mortality in Swedish Forests. Scand. J. For. Res. 2001, 16, 455–466. [Google Scholar] [CrossRef]
- Ledermann, T. Using logistic regression to model tree selection preferences for harvesting in forests in conversion. In Continuous Cover Forestry; Gadow, K., Nagel, J., Saborowski, J., Eds.; Springer: Dordrecht, The Netherlands, 2002; pp. 203–216. [Google Scholar]
- Manso, R.; Ningre, F.; Fortin, M. Simultaneous Prediction of Plot-Level and Tree-Level Harvest Occurrences with Correlated Random Effects. For. Sci. 2018, 36, 2994. [Google Scholar] [CrossRef]
- Thurnher, C.; Klopf, M.; Hasenauer, H. Forests in transition: A harvesting model for uneven-aged mixed species forests in Austria. Forestry 2011, 84, 517–526. [Google Scholar] [CrossRef]
- Eid, T. Testing a large-scale forestry scenario model by means of successive inventories on a forest property. Silva Fenn. 2004, 38, 305–317. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Taylor & Franxis Group, LLC: Boca Raton, FL, USA, 1984; p. 368. ISBN 978-0-412-04841-8. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Grégoire, T.G.; Schabenberger, O.; Barrett, J.P. Linear modelling of irregularly spaced, unbalanced, longitudinal data from permanent-plot measurements. Can. J. For. Res. 1995, 25, 137–156. [Google Scholar] [CrossRef]
- Fortin, M.; Delisle-Boulianne, S.; Pothier, D. Considering Spatial Correlations Between Binary Response Variables in Forestry: An Example Applied to Tree Harvest Modeling. For. Sci. 2013, 59, 253–260. [Google Scholar] [CrossRef]
- Delisle-Boulianne, S.; Fortin, M.; Achim, A.; Pothier, D. Modelling stem selection in northern hardwood stands: Assessing the effects of tree vigour and spatial correlations using a copula approach. Forestry 2014, 87, 607–617. [Google Scholar] [CrossRef]
- Finch, H. Recursive Partitioning in the Presence of Multilevel Data. Gen. Linear Model J. 2015, 41, 30–44. [Google Scholar]
- Strobl, C.; Malley, J.; Tutz, G. An Introduction to Recursive Partitioning: Rationale, Application and Characteristics of Classification and Regression Trees, Bagging and Random Forests. Psychol. Methods 2009, 14, 323–348. [Google Scholar] [CrossRef] [PubMed]
- Sela, R.J.; Simonoff, J.S. RE-EM trees: A data mining approach for longitudinal and clustered data. Mach. Learn. 2012, 86, 169–207. [Google Scholar] [CrossRef]
- Miller, P.; Mcartor, D.; Lubke, G. Metboost: Exploratory Regression Analysis with Hierarchically Clustered Data. Stat.ML. preprint. arXiv:1702.03994.
- Hajjem, A.; Bellavance, F.; Larocque, D. Mixed-effects random forest for clustered data. J. Stat. Comput. Simul. 2014, 84, 1313–1328. [Google Scholar] [CrossRef]
- Hajjem, A.; Larocque, D.; Bellavance, F. Generalized mixed effects regression trees. Stat. Probab. Lett. 2017, 126, 114–118. [Google Scholar] [CrossRef]
- Fokkema, M.; Smits, N.; Zeileis, A.; Hothorn, T.; Kelderman, H. Detecting treatment-subgroup interactions in clustered data with generalized linear mixed-effects model trees. Behav. Res. Methods 2017. [Google Scholar] [CrossRef]
- Karpievitch, Y.V.; Hill, E.G.; Leclerc, A.P.; Dabney, A.R.; Almeida, J.S. An introspective comparison of random forest-based classifiers for the analysis of cluster-correlated data by way of RF++. PLoS ONE 2009, 4, e7087. [Google Scholar] [CrossRef]
- Martin, D.P. Efficiently Exploring Multilevel Data with Recursive Partitioning. Ph.D. Thesis, University of Virginia, Charlottesville, VA, USA, 2015. [Google Scholar]
- Hothorn, T.; Hornik, K.; Zeileis, A. Unbiased Recursive Partitioning: A Conditional Inference Framework. J. Comput. Graph. Stat. 2006, 15, 651–674. [Google Scholar] [CrossRef] [Green Version]
- Fu, W.; Simonoff, J.S. Unbiased regression trees for longitudinal and clustered data. Comput. Stat. Data Anal. 2015, 88, 53–74. [Google Scholar] [CrossRef]
- Schmitz, F.; Polley, H.; Hennig, P.; Dunger, K.; Schwitzgebel, F. Die zweite Bundeswaldinventur BWI 2: Inventur und Auswertungsmethoden. The Second National Forest Inventory NFI 2: Inventory and Evaluation Methods; BMELV: Braunschweig, Germany, 2008; p. 85. [Google Scholar]
- Thünen Institut. Dritte Bundeswaldinventur. 2012. Available online: http://www.webcitation.org/72ru1KjDW (accessed on 2 October 2018).
- Ministerium für Ländlichen Raum und Verbraucherschutz Baden-Württemberg. Clusterstudie Forst und Holz Baden-Württemberg: Analyse der Spezifischen Wettbewerbssituation des Clusters Forst und Holz und Ableitung von Handlungsempfehlungen. Available online: http://www.webcitation.org/72rslkLVu (accessed on 2 October 2018).
- Riedel, T.; Hennig, P.; Kroiher, F.; Polley, H.; Schmitz, F.; Schwitzgebel, F. Die dritte Bundeswaldinventur BWI 2012. Inventur- und Auswertungsmethoden; BMEL: Berlin, Germany, 2017; p. 124. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J.H. The Elements of Statistical Learning. Data Mining, Inference, and Prediction, 2nd ed.; Corrected at 7th Printing 2013; Springer: New York, NY, USA, 2013; p. 745. ISBN 978-0-387-84857-0. [Google Scholar]
- Kuhn, M. Caret: Classification and Regression Training. Available online: http://www.webcitation.org/72ruazu3v (accessed on 2 October 2018).
- Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 2008, 28. [Google Scholar] [CrossRef]
- Verkerk, P.J.; Levers, C.; Kuemmerle, T.; Lindner, M.; Valbuena, R.; Verburg, P.H.; Zudin, S. Mapping wood production in European forests. For. Ecol. Manag. 2015, 357, 228–238. [Google Scholar] [CrossRef] [Green Version]
- Thürig, E.; Schelhaas, M.-J. Evaluation of a large-scale forest scenario model in heterogeneous forests: A case study for Switzerland. Can. J. For. Res. 2006, 36, 671–683. [Google Scholar] [CrossRef]
- FVA. WEHAM 2012. Modelle und Algorithmen; FVA: Freiburg, Germany, unpublished.
- Polyakov, M.; Wear, D.N.; Huggett, R.N. Harvest choice and timber supply models for forest forecasting. For. Sci. 2010, 56, 344–355. [Google Scholar]
- Rinaldi, F.; Jonsson, R.; Sallnäs, O.; Trubins, R. Behavioral Modelling in a Decision Support System. Forests 2015, 6, 311–327. [Google Scholar] [CrossRef] [Green Version]
- Schelhaas, M.-J.; Hengeveld, G.M.; Heidema, N.; Thürig, E.; Rohner, B.; Vacchiano, G.; Vayreda, J.; Redmond, J.; Socha, J.; Fridman, J.; et al. Species-specific, pan-European diameter increment models based on data of 2.3 million trees. For. Ecosyst. 2018, 5, 716. [Google Scholar] [CrossRef]
- Sloboda, V.B.; Gaffrey, D.; Matsumura, N. Regionale und lokale Systeme von Höhenkurven für gleichaltrige Waldbestände. Allg. Forst Jagdztg. 1993, 164, 225–228. [Google Scholar]
- Strobl, C.; Boulesteix, A.-L.; Kneib, T.; Augustin, T.; Zeileis, A. Conditional variable importance for random forests. BMC Bioinform. 2008, 9, 307. [Google Scholar] [CrossRef]
- Hothorn, T.; Seidbold, H.; Zeileis, A. Package ‘Partykit’: A Toolkit for Recursive Partytioning. Available online: http://www.webcitation.org/72rumdgV2 (accessed on 2 October 2018).
- Breiman, L. Bagging Predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Strobl, C.; Hothorn, T.; Zeileis, A. Party on!: A New, Conditional Variable-Importance Measure for Random Forests Available in the party Package. R J. 2009, 1, 14–17. [Google Scholar]
- Martin, D. Mleda: Multilevel Exploratory Data Analysis. Available online: http://www.webcitation.org/72ruRxsA0 (accessed on 2 October 2018).
- R Core Team. R: A Language and Environment for Statistical, version 3.4.3; R Foundation for Statistical Computing: Vienna, Austria, 2017.
- Hothorn, T.; Bühlmann, P.; Dudoit, S.; Molinaro, A.; van der Laan, M.J. Survival ensembles. Biostatistics 2006, 7, 355–373. [Google Scholar] [CrossRef]
- Strobl, C.; Boulesteix, A.-L.; Zeileis, A.; Hothorn, T. Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinform. 2007, 8, 25. [Google Scholar] [CrossRef] [PubMed]
- Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J.C.; Sheridan, R.P.; Feuston, B.P. Random forest: A classification and regression tool for compound classification and QSAR modeling. J. Chem. Inf. Comput. Sci. 2003, 43, 1947–1958. [Google Scholar] [CrossRef] [PubMed]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67. [Google Scholar] [CrossRef]
- Powell, M.J.D. The BOBYQA Algorithm for Bound Constrained Optimization without Derivatives; Cambridge NA Report NA2009/06; University of Cambridge: Cambridge, UK, 2009; pp. 26–46. [Google Scholar]
- Nelder, J.A.; Mead, R. A Simplex Method for Function Minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
- Rohner, B.; Waldner, P.; Lischke, H.; Ferretti, M.; Thürig, E. Predicting individual-tree growth of central European tree species as a function of site, stand, management, nutrient, and climate effects. Eur. J. For. Res. 2018, 137, 29–44. [Google Scholar] [CrossRef]
- Sakamoto, Y.; Ishiguro, M.; Kitagawa, G. Akaike Information Criterion Statistics; KTK Scient. Publ: Tokyo, Japan, 1986; p. 290. ISBN 9027722536. [Google Scholar]
- Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. Available online: http://www.webcitation.org/72ruusQZJ (accessed on 2 October 2018).
- r-project. DHARMa Vignette. Available online: http://www.webcitation.org/72rtsdcBU (accessed on 2 October 2018).
- Faraway, J.J. Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models; CRC Press: Boca Raton, FL, USA, 2016; p. 399. ISBN 1498720986. [Google Scholar]
- Renaud, O.; Victoria-Feser, M.-P. A robust coefficient of determination for regression. J. Stat. Plan. Inference 2010, 140, 1852–1862. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, E.L.; Casella, G. Theory of Point Estimation, 2nd ed.; Springer: New York, NY, USA, 1998; p. 590. ISBN 9780387985022. [Google Scholar]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Kändler, G. The design of the second German national forest inventory. In Proceedings of the Eighth Annual Forest Inventory and Analysis Symposium, Monterey, CA, USA, 16–19 October 2006; McRoberts, R.E., Reams, G.A., van Duesen, P.C., McWilliams, W.H., Eds.; U.S. Department of Agriculture: Washington, DC, USA, 2006; pp. 19–24. [Google Scholar]
- Spiecker, H. Silvicultural management in maintaining biodiversity and resistance of forests in Europe—Temperate zone. J. Environ. Manag. 2003, 67, 55–65. [Google Scholar] [CrossRef]
- Fortin, M. Population-averaged predictions with generalized linear mixed-effects models in forestry: An estimator based on Gauss−Hermite quadrature. Can. J. For. Res. 2013, 43, 129–138. [Google Scholar] [CrossRef]
- Fortin, M. Using a segmented logistic model to predict trees to be harvested in forest growth forecasts. For. Syst. 2014, 23, 139. [Google Scholar] [CrossRef]
Attributes | Tree-Level Harvest Probability | |
---|---|---|
F-rDiffDq (index, centered and scaled) | −0.245 *** | (0.017) |
Tree height (m, centered and scaled) | 0.120 *** | (0.027) |
Species share (%) | 0.133 *** | (0.016) |
Skidding damage (yes) | 0.324 *** | (0.029) |
Fungus (yes) | 1.291 *** | (0.328) |
Dead (yes) | 1.400 *** | (0.246) |
Other stem damages (yes) | 0.380 *** | (0.045) |
Pruned (yes) | −0.419 *** | (0.062) |
Species group (other conifers) | −0.545 *** | (0.038) |
Species group (oak) | −1.300 *** | (0.070) |
Species group (deciduous) | −0.960 *** | (0.041) |
Plot standing volume (m3 over bark ha−1, centered and scaled) | −0.215 *** | (0.024) |
Average plot diameter at breast height (DBH, cm, centered and scaled) | 0.245 *** | (0.026) |
Site index (m3 over bark ha−1, centered and scaled) | −0.169 *** | (0.021) |
Altitude (m above sea level, centered and scaled) | −0.197 *** | (0.019) |
Ownership type (medium private) | −0.496 *** | (0.073) |
Ownership type (others) | −0.330 *** | (0.056) |
Plot harvest stratum (group 1) | 0.282 *** | (0.108) |
Plot harvest stratum (group 2) | 2.336 *** | (0.303) |
Plot harvest stratum (group 3) | −0.375 *** | (0.084) |
IA: Spruce spp. on state forest—Average DBH of trees on the plot—F-rDiffDq | 0.247 *** | (0.048) |
IA: Other conifers on state forest—Average DBH of trees on the plot—F-rDiffDq | 0.176 *** | (0.053) |
IA: Spruce spp. on community forest—Av. DBH of trees on the plot—F-rDiffDq | 0.241 *** | (0.037) |
IA: Other conifers on community forest—Av. DBH of trees on the plot—F-rDiffDq | 0.211 *** | (0.046) |
IA: Conifers on large private forest—Av. DBH of trees on the plot—F-rDiffDq | 0.267 *** | (0.056) |
IA: Spruce spp. on medium priv. forest—Av. DBH of trees on the plot—F-rDiffDq | 0.213 *** | (0.064) |
IA: Other conifers on medium private—Av. DBH of trees on the plot—F-rDiffDq | 0.290 *** | (0.063) |
IA: Spruce spp. on small private forest—Av. DBH of trees on the plot—F-rDiffDq | 0.489 *** | (0.054) |
IA: Other conifers on small private—Average DBH of trees on the plot—F-rDiffDq | 0.306 *** | (0.092) |
IA: Deciduous—Average DBH of trees on the plot—F-rDiffDq | 0.068 *** | (0.018) |
Constant (Intercept) | 0.450 *** | (0.102) |
Observations | 49,055 |
Model 1 1 (Mean Absolute Residuals 2) | Model 2 1 (Mean Absolute Residuals 2) | Result | Adjusted p-Value 3 | Effect Size (r) 4 | |||
---|---|---|---|---|---|---|---|
CTree-RF-pt | (95.7) | CTree-RF-t | (98.6) | Model 1 superior | 0.009 | ** | 0.06 |
CTree-RF-pt | (95.7) | CART-RF-pt | (95.8) | Model 1 ≈ Model 2 | 0.904 | n | |
CTree-RF-pt | (95.7) | CART-RF-t | (101.9) | Model 1 superior | 0.001 | ** | 0.12 |
CTree-RF-pt | (95.7) | GLMM | (98.8) | Model 1 superior | 0.007 | ** | 0.06 |
CTree-RF-t | (98.6) | CART-RF-pt | (95.8) | Model 2 superior | 0.020 | * | 0.05 |
CTree-RF-t | (98.6) | CART-RF-t | (101.9) | Model 1 superior | 0.049 | * | 0.12 |
CTree-RF-t | (98.6) | GLMM | (98.8) | Model 1 ≈ Model 2 | 0.884 | n | |
CART-RF-pt | (95.8) | CART-RF-t | (101.9) | Model 1 superior | 0.001 | ** | 0.12 |
CART-RF-pt | (95.8) | GLMM | (98.8) | Model 1 superior | 0.014 | * | 0.05 |
CART-RF-t | (101.9) | GLMM | (98.8) | Model 1 ≈ Model 2 | 0.077 | n |
Tree-Level Method 1 | VE 2 | RMSE 3 |
---|---|---|
CTree-RF-pt | 0.380 | 138.27 |
CTree-RF-t | 0.327 | 144.15 |
CART-RF-pt | 0.366 | 139.88 |
CART RF-t | 0.177 | 159.42 |
GLMM | 0.314 | 145.47 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kilham, P.; Hartebrodt, C.; Kändler, G. Generating Tree-Level Harvest Predictions from Forest Inventories with Random Forests. Forests 2019, 10, 20. https://doi.org/10.3390/f10010020
Kilham P, Hartebrodt C, Kändler G. Generating Tree-Level Harvest Predictions from Forest Inventories with Random Forests. Forests. 2019; 10(1):20. https://doi.org/10.3390/f10010020
Chicago/Turabian StyleKilham, Philipp, Christoph Hartebrodt, and Gerald Kändler. 2019. "Generating Tree-Level Harvest Predictions from Forest Inventories with Random Forests" Forests 10, no. 1: 20. https://doi.org/10.3390/f10010020