Explaining Theft Using Offenders’ Activity Space Inferred from Residents’ Mobile Phone Data
Abstract
:1. Introduction
1.1. Routine Activities and Activity Nodes
1.2. Mobility Patterns
2. Materials and Methods
2.1. Estimation of Offender Counts (Independent Variables)
2.2. Dependent Variables and Covariates
2.3. Regression Models
3. Results
3.1. Descriptive Statistics of Variables
3.2. Spatial Distribution of Crime and Estimated Offenders
3.3. Results of Negative Binomial Regression Models
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cohen, L.; Felson, M. Social Change and Crime Rate Trends: A Routine Activity Approach. Am. Sociol. Rev. 1979, 44, 588–608. [Google Scholar] [CrossRef]
- Cohen, L.E. Modeling Crime Trends: A Criminal Opportunity Perspective. J. Res. Crime Delinq. 1981, 18, 138–164. [Google Scholar] [CrossRef]
- Brantingham, P.; Brantingham, P. Criminality of place: Crime generators and crime attractors. Eur. J. Offender Policy Res. 1995, 3, 5–26. [Google Scholar] [CrossRef]
- Song, G.; Liu, L.; Wim, B.; Xiao, L.; Zhou, S.; Liao, W. Testing Indicators of Risk Populations for Theft from the Person across Space and Time: The Significance of Mobility and Outdoor Activity. Ann. Am. Assoc. Geogr. 2018, 108, 1370–1388. [Google Scholar] [CrossRef]
- Brantingham, P.; Brantingham, P. Crime pattern theory. In Environmental Criminology and Crime Analysis; Wortley, R., Mazerolle, L., Eds.; Willan Publishing: London, UK, 2008; pp. 78–93. [Google Scholar]
- Chainey, S.P.; Matias, J.A.S.; Junior, F.C.F.N.; Silva, T.L.C.D.; Macêdo, J.A.F.d.; Magalhes, R.P.; Neto, J.F.d.Q.; Silva, W.C.P. Improving the Creation of Hot Spot Policing Patrol Routes: Comparing Cognitive Heuristic Performance to an Automated Spatial Computation Approach. Int. J. Geo-Inf. 2021, 10, 560. [Google Scholar] [CrossRef]
- Menting, B.; Lammers, M.; Ruiter, S.; Bernasco, W. The Influence of Activity Space and Visiting Frequency on Crime Location Choice: Findings from an Online Self-Report Survey. Br. J. Criminol. 2019, 60, 303–322. [Google Scholar] [CrossRef]
- Menting, B.; Lammers, M.; Ruiter, S.; Bernasco, W. Family Matters: Effects of Family Members’ Residential Areas on Crime Location Choice. Criminology 2016, 54, 413–433. [Google Scholar] [CrossRef]
- Kortas, F.; Grigoriev, A.; Piccillo, G. Exploring multi-scale variability in hotspot mapping: A case study on housing prices and crime occurrences in Heerlen. Cities 2022, 128, 103814. [Google Scholar] [CrossRef]
- Bernasco, W.; Block, R. Robberies in Chicago: A Block-Level Analysis of the Influence of Crime Generators, Crime Attractors, and Offender Anchor Points. J. Res. Crime Delinq. 2011, 48, 33–57. [Google Scholar] [CrossRef]
- Kurland, J.; Johnson, S.D.; Tilley, N. Offenses around Stadiums: A natural experiment on crime attraction and generation. J. Res. Crime Delinq. 2013, 51, 5–28. [Google Scholar] [CrossRef]
- Xiao, L.; Liu, L.; Song, G.; Ruiter, S.; Zhou, S. Journey-to-Crime Distances of Residential Burglars in China Disentangled: Origin and Destination Effects. Isprs Int. J. Geo Inf. 2018, 7, 325. [Google Scholar] [CrossRef]
- Bernasco, W. Adolescent offenders’ current whereabouts predict locations of their future crimes. PLoS ONE 2019, 14, e0210733. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Sun, Q.; Xiao, L.; Song, G.w.; Chen, J. The temporal influence difference of drug-related personnels’ routine activity on the spatial pattern of theft. J. Geo-Inf. Sci. 2021, 23, 2187–2200. [Google Scholar]
- Song, G.; Yanji, Z.; Bernasco, W.; Cai, L.; Liu, L.; Qin, B.; Chen, P. Residents, Employees and Visitors: Effects of Three Types of Ambient Population on Theft on Weekdays and Weekends in Beijing, China. J. Quant. Criminol. 2021, 39, 385–423. [Google Scholar] [CrossRef] [PubMed]
- Bernasco, W.; Block, R.; Ruiter, S. Go where the money is: Modeling street robbers’ location choices. J. Econ. Geogr. 2012, 13, 119–143. [Google Scholar] [CrossRef]
- Rossmo, D.K.; Lu, Y.; Fang, T. Spatial-temporal crime paths. In Patterns, Prevention, and Geometry of Crime; Andresen, M.A., Kinney, J.B., Eds.; Routledge: New York, NY, USA, 2012; pp. 16–42. [Google Scholar]
- Griffiths, G.; Johnson, S.; Chetty, K. UK-based Terrorists’ Antecedent Behaviour: A Spatial and Temporal Analysis. Appl. Geogr. 2017, 86, 274–282. [Google Scholar] [CrossRef]
- Zhou, S.; Deng, L.; Kwan, M.P.; Yan, R. Social and spatial differentiation of high and low income groups’ out-of-home activities in Guangzhou, China. Cities 2015, 45, 81–90. [Google Scholar] [CrossRef]
- Tu, P.; Yao, W.; Zhao, Z.; Wang, P.; Wu, S.; Fang, Z. Interday Stability of Taxi Travel Flow in Urban Areas. ISPRS Int. J. Geo-Inf. 2022, 11, 590. [Google Scholar] [CrossRef]
- Qian, Z. Travel Behavior of Residents in Transit-Oriented Development (TOD) Neighborhoods: A Study of Two Neighborhoods in Shenzhen, China. In Urban Transformational Landscapes in the City-Hinterlands of Asia: Challenges and Approaches; Springer Nature: Singapore, 2023; pp. 41–53. [Google Scholar]
- Mao, Y.; Ding, J. Study on Spatial-temporal Partterns of Robbery and Snatch: A Case Study of Pidong New Area, Shanghai. Hum. Grography 2014, 29, 49–54. [Google Scholar] [CrossRef]
- Qin, X.; Liu, L. Evaluating the Relationships of Bus Transit with Street and Off-Street Robberies. Prof. Geogr. 2015, 68, 227–237. [Google Scholar] [CrossRef]
- Li, J.; Song, G.; Xiao, L.; Zhang, X. Characteristics and influencing factors of thieves’travel distance: A comprehensive consideration of residential community, target community, and physical barriers to travel. Prog. Geogr. 2022, 41, 2123–2134. [Google Scholar] [CrossRef]
- Sun, D.; Dan, B. Impact of urban built environment on residential choice of commuting mode in Shanghai. Acta Geogr. Sin. 2015, 70, 1664–1674. [Google Scholar]
- Shao, H.; Jin, C.; Zhong, Y.; Mao, W. The impact of Haikou’s urban built environment on online car-hailing during peak hours: Based on DIDI travel data. Hum. Geogr. 2022, 37, 130–139. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, D.; Xiao, J.; Wang, S. Spatial characteristics and influencing factors analysis of journey-to-crime based on crime pattern theory: A study of theft crime in Nanguan District, Changchun. Geogr. Res. 2021, 40, 885–899. [Google Scholar]
- Wiles, P.; Costello, A. The ‘road to nowhere’: The evidence for travelling criminals. In Principles of Geographical Offender Profiling; Home Office Research Study 207, Research, Development and Statistics Directorate, Home Office; Routledge: London, UK, 2000; pp. 1–12. [Google Scholar]
- Gabor, T.; Gottheil, E. Offender Characteristics and Spatial Mobility: An Empirical Study and Some Policy Implications. Can. J. Criminol. Rev. Can. Criminol. 1984, 26, 267–281. [Google Scholar] [CrossRef]
- Song, G.; Bernasco, W.; Liu, L.; Xiao, L.; Zhou, S.; Liao, W. Crime Feeds on Legal Activities: Daily Mobility Flows Help to Explain Thieves’ Target Location Choices. J. Quant. Criminol. 2019, 35, 831–854. [Google Scholar] [CrossRef]
- Chen, J.; Liu, L.; Zhou, S.; Xiao, L.; Jiang, C. Spatial Variation Relationship between Floating Population and Residential Burglary: A Case Study from ZG, China. ISPRS Int. J. Geo-Inf. 2017, 6, 246. [Google Scholar] [CrossRef]
- Xiao, L.; Ruiter, S.; Liu, L.; Song, G.; Zhou, S. Burglars blocked by barriers? The impact of physical and social barriers on residential burglars’ target location choices in China. Comput. Environ. Urban Syst. 2021, 86, 101582. [Google Scholar] [CrossRef]
- Yue, H.; Liu, L.; Luzi, X. Investigating the effect of people on the street and streetscape physical environment on the location choice of street theft crime offenders using street view images and a discrete spatial choice model. Appl. Geogr. 2023, 157, 103025. [Google Scholar] [CrossRef]
- Xu, C.; Luzi, X.; Song, G.; Pan, B.; Liu, H. The impact of community residents’ occupational structure on the spatial distribution of different types of crimes. Habitat Int. 2021, 117, 102435. [Google Scholar] [CrossRef]
- Conrow, L.; Aldstadt, J.; Mendoza, N.S. A spatio-temporal analysis of on-premises alcohol outlets and violent crime events in Buffalo, NY. Appl. Geogr. 2015, 58, 198–205. [Google Scholar] [CrossRef]
- Hong, J.; Huang, L. A split and swaying approach to building information society: The case of Internet cafes in China. Telemat. Inform. 2005, 22, 377–393. [Google Scholar] [CrossRef]
- Lan, M. Examining the Impact of Bus Stop Location Change on Robbery. Master’s Thesis, University of Cincinnati, Cincinnati, OH, USA, 2016. [Google Scholar]
- Xiao, L.; Liu, L.; Zhou, S.; Song, G.; Zhang, C.; Chen, J. Spatio-temporal Pattern of Pickpocketing at Subway Stations on Weekdays of ZG City and Its Influencing Factors. Sci. Geogr. Sin. 2018, 38, 1227–1234. [Google Scholar]
- Chen, Q. Advanced Econometrics and Stata Applications, 2nd ed. The sort and count models; Higher Education Press: Beijing, China, 2014; pp. 211–213. [Google Scholar]
- Berk, R.; MacDonald, J. Overdispersion and Poisson Regression. J. Quant. Criminol. 2008, 24, 269–284. [Google Scholar] [CrossRef]
- Land, K.; McCall, P.; Nagin, D. A Comparison of Poisson, Negative Binomial, and Semiparametric Mixed Poisson Regression Models: With Empirical Applications to Criminal Careers Data. Sociol. Methods Res. 1996, 24, 387–442. [Google Scholar] [CrossRef]
- Xiao, L.; Liu, L.; Song, G.; Zhou, S.; Long, D.; Feng, J. Impacts of community environment on residential burglary based on rational choice theory. Geogr. Res. 2017, 36, 2479–2491. [Google Scholar]
- Chen, Q. Advanced Econometrics and Stata Applications, 2nd ed. Model settings and data issues; Higher Education Press: Beijing, China, 2014; pp. 118–119. [Google Scholar]
- Xu, C.; Yang, Y.; Song, G.; Liu, L.; Lan, M.; Chen, X. The impact of civil registration-based demographic heterogeneity on community thefts. Habitat Int. 2022, 129, 102673. [Google Scholar] [CrossRef]
- Chen, Q. Advanced Econometrics and Stata Applications, 2nd ed.; Model Settings and Data Issues; Higher Education Press: Beijing, China, 2014; pp. 123–124. [Google Scholar]
- Shrestha, N. Detecting multicollinearity in regression analysis. Am. J. Appl. Math. Stat. 2020, 8, 39–42. [Google Scholar] [CrossRef]
- Johnson, L.T.; Taylor, R.B.; Ratcliffe, J.H. Need drugs, will travel?: The distances to crime of illegal drug buyers. J. Crim. Justice 2013, 41, 178–187. [Google Scholar] [CrossRef]
- Levine, N.; Lee, P. Journey-to-Crime by Gender and Age Group in Manchester, England. In Crime Modeling and Mapping Using Geospatial Technologies; Springer: Dordrecht, The Netherlands, 2013; pp. 145–178. [Google Scholar]
- Ackerman, J.; Rossmo, D. How Far to Travel? A Multilevel Analysis of the Residence-to-Crime Distance. J. Quant. Criminol. 2014, 31, 237–262. [Google Scholar] [CrossRef]
- Andresen, M.; Frank, R.; Felson, M. Age and the distance to crime. Criminol. Crim. Justice 2014, 14, 314–333. [Google Scholar] [CrossRef]
- Bernasco, W.; Nieuwbeerta, P. How do residential burglars select target areas?: A New Approach to the Analysis of Criminal Location Choice. Br. J. Criminol. 2005, 4, 296–315. [Google Scholar] [CrossRef]
- Ozer, M.; Onat, I.; Akbas, H.; Elsayed, N.; Elsayed, Z.; Varlioglu, S. Exploring the Journey to Drug Overdose: Applying the Journey to Crime Framework to Drug Sales Locations and Overdose Death Locations. arXiv 2023, arXiv:2305.19859. [Google Scholar]
- Bernasco, W. Modeling Micro-Level Crime Location Choice: Application of the Discrete Choice Framework to Crime at Places. J. Quant. Criminol. 2010, 26, 113–138. [Google Scholar] [CrossRef]
- Johnson, S.; Summers, L. Testing Ecological Theories of Offender Spatial Decision Making Using a Discrete Choice Model. Crime Delinq. 2015, 61, 454–480. [Google Scholar] [CrossRef]
- Lammers, M.; Menting, B.; Ruiter, S.; Bernasco, W. Biting Once, Twice: THE Influence of Prior on Subsequent Crime Location Choice. Criminology 2015, 53, 309–329. [Google Scholar] [CrossRef]
O_Code | D_Code | O_Ptype | D_Ptype | Count |
---|---|---|---|---|
440113105202 | 440106011029 | 1 | 2 | 2 |
440113105202 | 440111103221 | 2 | 0 | 2 |
440113105202 | 440111002004 | 1 | 0 | 1 |
440113105202 | 440106022006 | 0 | 1 | 58 |
440113105202 | 440106021006 | 2 | 0 | 4 |
440113105202 | 440106017010 | 1 | 0 | 4 |
440113105202 | 440106009006 | 0 | 0 | 17 |
... | ... | ... | ... | ... |
Variables | Mean | Variance | Min | Max | Coefficient of Variation |
---|---|---|---|---|---|
The number of thefts | 36.392 | 61.110 | 0 | 929 | 0.215 |
The number of offenders estimated: | |||||
Home-based offender count (V1) | 1.484 | 4.031 | 0 | 66 | 1.353 |
Spatial-lagged offender count (V2) | 3.677 | 6.072 | 0 | 83.4 | 0.670 |
Flow-based offender count (V3) | 35.348 | 66.65 | 0 | 1096.32 | 0.231 |
Bus stops | 2.544 | 3.989 | 0 | 102 | 0.785 |
Subway stations | 0.047 | 0.231 | 0 | 3 | 10.226 |
Internet bars | 1.102 | 2.208 | 0 | 24 | 1.348 |
KTVs | 0.515 | 1.329 | 0 | 16 | 2.238 |
Cinemas | 0.199 | 0.777 | 0 | 10 | 4.430 |
Migrant population (%) | 0.270 | 0.237 | 0 | 0.974 | 1.803 |
Variables | Theft | (V1) | (V2) | (V3) | Bus Stops | Subway Stations | Internet Bars | KTVs | Cinemas | Migrant Population (%) |
---|---|---|---|---|---|---|---|---|---|---|
Theft | 1 | |||||||||
(V1) | 0.626 *** | 1 | ||||||||
(V2) | 0.672 *** | 0.841 *** | 1 | |||||||
(V3) | 0.778 *** | 0.854 *** | 0.824 *** | 1 | ||||||
Bus stops | 0.584 *** | 0.317 *** | 0.374 *** | 0.500 *** | 1 | |||||
Subway stations | 0.205 *** | 0.082 *** | 0.087 *** | 0.218 *** | 0.170 *** | 1 | ||||
Internet bars | 0.595 *** | 0.363 *** | 0.414 *** | 0.444 *** | 0.326 *** | 0.123 *** | 1 | |||
KTVs | 0.517 *** | 0.301 *** | 0.343 *** | 0.430 *** | 0.304 *** | 0.170 *** | 0.506 *** | 1 | ||
Cinemas | 0.358 *** | 0.121 *** | 0.147 *** | 0.277 *** | 0.232 *** | 0.270 *** | 0.361 *** | 0.390 *** | 1 | |
Migrant population (%) | 0.395 *** | 0.312 *** | 0.410 *** | 0.368 *** | 0.336 *** | 0.048 * | 0.326 *** | 0.218 *** | 0.088 *** | 1 |
Variables | Model 1 (Home-Based) | Model 2 (Spatial-Lagged) | Model 3 (Flow-Based) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Standardized | Unstandardized | Standardized | Unstandardized | Standardized | Unstandardized | |||||||
IRR | coef. | IRR | coef. | IRR | coef. | IRR | coef. | IRR | coef. | IRR | coef. | |
Offenders | 1.334 | 0.288 *** | 1.074 | 0.072 *** | 1.465 | 0.382 *** | 1.065 | 0.063 *** | 1.629 | 0.488 *** | 1.007 | 0.007 *** |
Bus stops | 1.510 | 0.412 *** | 1.109 | 0.103 *** | 1.444 | 0.367 *** | 1.096 | 0.092 *** | 1.370 | 0.315 *** | 1.082 | 0.079 *** |
Subway stations | 1.115 | 0.109 *** | 1.603 | 0.472 *** | 1.123 | 0.116 *** | 1.655 | 0.504 *** | 1.076 | 0.073 *** | 1.372 | 0.316 *** |
Internet bars | 1.272 | 0.241 *** | 1.115 | 0.109 *** | 1.243 | 0.218 *** | 1.104 | 0.099 *** | 1.251 | 0.224 *** | 1.107 | 0.101 *** |
KTVs | 1.129 | 0.121 *** | 1.096 | 0.091 *** | 1.117 | 0.111 *** | 1.087 | 0.083 *** | 1.098 | 0.094 *** | 1.073 | 0.070 *** |
Cinemas | 1.109 | 0.103 *** | 1.142 | 0.133 *** | 1.106 | 0.100 *** | 1.138 | 0.129 *** | 1.078 | 0.076 *** | 1.102 | 0.097 *** |
Migrant population (%) | 1.388 | 0.328 *** | 3.993 | 1.385 *** | 1.333 | 0.288 *** | 3.372 | 1.215 *** | 1.341 | 0.293 *** | 3.452 | 1.239 *** |
Chi-square | 2062.47 *** | 2158.94 *** | 2186.48 *** | |||||||||
α | 0.798 *** | 0.767 *** | 0.760 *** | |||||||||
Max VIF | 1.59 | 1.60 | 1.67 | |||||||||
AIC | 21,874.7 | 21,778.3 | 21,750.7 | |||||||||
BIC | 21,927.7 | 21,831.2 | 21,803.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Li, C.; Xiao, L.; Song, G. Explaining Theft Using Offenders’ Activity Space Inferred from Residents’ Mobile Phone Data. ISPRS Int. J. Geo-Inf. 2024, 13, 8. https://doi.org/10.3390/ijgi13010008
Liu L, Li C, Xiao L, Song G. Explaining Theft Using Offenders’ Activity Space Inferred from Residents’ Mobile Phone Data. ISPRS International Journal of Geo-Information. 2024; 13(1):8. https://doi.org/10.3390/ijgi13010008
Chicago/Turabian StyleLiu, Lin, Chenchen Li, Luzi Xiao, and Guangwen Song. 2024. "Explaining Theft Using Offenders’ Activity Space Inferred from Residents’ Mobile Phone Data" ISPRS International Journal of Geo-Information 13, no. 1: 8. https://doi.org/10.3390/ijgi13010008