Effect of the pH on the Antibacterial Potential and Cytotoxicity of Different Plasma-Activated Liquids
Abstract
:1. Introduction
2. Results and Discussions
2.1. Evaluation Physicochemical Properties of PALs
2.1.1. Effect of Activation Time on Temperature and Volume of Activated Liquids
2.1.2. Effect of Activation Time on pH, ORP, and Conductivity
2.1.3. Analysis of the Reactive Species of PALs
2.2. Antimicrobial Effect of PALs on E. coli
2.3. Cytotoxicity Test
3. Materials and Methods
3.1. Preparation of PALs
3.2. Characterization of the Gliding Arc Plasma Jet
3.3. Characterization of the Temperature, Volume, and Physicochemical Parameters of PALs
Absolute Concentrations of H2O2, NO2−, NO3−, and HNO2
3.4. Antimicrobial Effect of PALs on Escherichia coli
3.5. Cytotoxicity Evaluation of PALs
3.6. Statistical Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- How, Z.T.; Kristiana, I.; Busetti, F.; Linge, K.L.; Joll, C.A. Organic Chloramines in Chlorine-Based Disinfected Water Systems: A Critical Review. J. Environ. Sci. 2017, 58, 2–18. [Google Scholar] [CrossRef] [PubMed]
- Locke, B.R.; Sato, M.; Sunka, P.; Hoffmann, M.R.; Chang, J.S. Electrohydraulic Discharge and Nonthermal Plasma for Water Treatment. Ind. Eng. Chem. Res. 2005, 45, 882–905. [Google Scholar] [CrossRef]
- Metelmann, H.R.; von Woedtke, T.; Weltmann, K.D. Comprehensive Clinical Plasma Medicine: Cold Physical Plasma for Medical Application. In Comprehensive Clinical Plasma Medicine: Cold Physical Plasma for Medical Application; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–526. [Google Scholar]
- Lata, S.; Chakravorty, S.; Mitra, T.; Pradhan, P.K.; Mohanty, S.; Patel, P.; Jha, E.; Panda, P.K.; Verma, S.K.; Suar, M. Aurora Borealis in Dentistry: The Applications of Cold Plasma in Biomedicine. Mater. Today Bio. 2022, 13, 100200. [Google Scholar] [CrossRef] [PubMed]
- Morabit, Y.; Hasan, M.I.; Whalley, R.D.; Robert, E.; Modic, M.; Walsh, J.L. A Review of the Gas and Liquid Phase Interactions in Low-Temperature Plasma Jets Used for Biomedical Applications. Eur. Phys. J. D 2021, 75, 32. [Google Scholar] [CrossRef]
- Sivachandiran, L.; Khacef, A. Enhanced Seed Germination and Plant Growth by Atmospheric Pressure Cold Air Plasma: Combined Effect of Seed and Water Treatment. RSC Adv. 2017, 7, 1822–1832. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Kim, C.H. Applications of Plasma-Activated Liquid in the Medical Field. Biomedicines 2021, 9, 1700. [Google Scholar] [CrossRef]
- Guo, D.; Liu, H.; Zhou, L.; Xie, J.; He, C. Plasma-Activated Water Production and Its Application in Agriculture. J. Sci. Food Agric. 2021, 101, 4891–4899. [Google Scholar] [CrossRef]
- Milhan, N.V.M.; Chiappim, W.; Sampaio, A.D.G.; da Cruz Vegian, M.R.; Pessoa, R.S.; Koga-ito, C.Y. Applications of Plasma-Activated Water in Dentistry: A Review. Int. J. Mol. Sci. 2022, 23, 4131. [Google Scholar] [CrossRef]
- Oehmigen, K.; Hähnel, M.; Brandenburg, R.; Wilke, C.; Weltmann, K.D.; von Woedtke, T. The Role of Acidification for Antimicrobial Activity of Atmospheric Pressure Plasma in Liquids. Plasma Process. Polym. 2010, 7, 250–257. [Google Scholar] [CrossRef]
- Lukes, P.; Dolezalova, E.; Sisrova, I.; Clupek, M. Aqueous-Phase Chemistry and Bactericidal Effects from an Air Discharge Plasma in Contact with Water: Evidence for the Formation of Peroxynitrite through a Pseudo-Second-Order Post-Discharge Reaction of H2O2 and HNO2. Plasma Sources Sci. Technol. 2014, 23, 015019. [Google Scholar] [CrossRef]
- Gorbanev, Y.; O’Connell, D.; Chechik, V. Non-Thermal Plasma in Contact with Water: The Origin of Species. Chemistry 2016, 22, 3496–3505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Xu, Z.; Cheng, C.; Wei, J.; Lan, Y.; Ni, G.; Sun, Q.; Qian, S.; Zhang, H.; Xia, W.; et al. Bactericidal Effects of Plasma Induced Reactive Species in Dielectric Barrier Gas–Liquid Discharge. Plasma Chem. Plasma Process. 2017, 37, 415–431. [Google Scholar] [CrossRef]
- Tang, Y.Z.; Lu, X.P.; Laroussi, M.; Dobbs, F.C. Sublethal and Killing Effects of Atmospheric-Pressure, Nonthermal Plasma on Eukaryotic Microalgae in Aqueous Media. Plasma Process. Polym. 2008, 5, 552–558. [Google Scholar] [CrossRef] [Green Version]
- Oehmigen, K.; Winter, J.; Hähnel, M.; Wilke, C.; Brandenburg, R.; Weltmann, K.D.; von Woedtke, T. Estimation of Possible Mechanisms of Escherichia coli Inactivation by Plasma Treated Sodium Chloride Solution. Plasma Process. Polym. 2011, 8, 904–913. [Google Scholar] [CrossRef]
- Hansch, M.A.C.; Mann, M.; Weltmann, K.D.; von Woedtke, T. Analysis of Antibacterial Efficacy of Plasma-Treated Sodium Chloride Solutions. J. Phys. D Appl. Phys. 2015, 48, 454001. [Google Scholar] [CrossRef]
- Bruggeman, P.J.; Kushner, M.J.; Locke, B.R.; Gardeniers, J.G.E.; Graham, W.G.; Graves, D.B.; Hofman-Caris, R.C.H.M.; Maric, D.; Reid, J.P.; Ceriani, E.; et al. Plasma–Liquid Interactions: A Review and Roadmap. Plasma Sources Sci. Technol. 2016, 25, 053002. [Google Scholar] [CrossRef] [Green Version]
- Bălan, G.G.; Roşca, I.; Ursu, E.L.; Doroftei, F.; Bostănaru, A.C.; Hnatiuc, E.; Năstasă, V.; Şandru, V.; Ştefănescu, G.; Trifan, A.; et al. Plasma-Activated Water: A New and Effective Alternative for Duodenoscope Reprocessing. Infect. Drug Resist. 2018, 11, 727–733. [Google Scholar] [CrossRef] [Green Version]
- Mahdikia, H.; Shokri, B.; Majidzadeh, A.K. The Feasibility Study of Plasma-Activated Water as a Physical Therapy to Induce Apoptosis in Melanoma Cancer Cells In-Vitro. Iran. J. Pharm. Res. 2021, 20, 337–350. [Google Scholar] [CrossRef]
- Perez, S.M.; Biondi, E.; Laurita, R.; Proto, M.; Sarti, F.; Gherardi, M.; Bertaccini, A.; Colombo, V. Plasma Activated Water as Resistance Inducer against Bacterial Leaf Spot of Tomato. PLoS ONE 2019, 14, e0217788. [Google Scholar] [CrossRef]
- Li, Y.; Pan, J.; Wu, D.; Tian, Y.; Zhang, J.; Fang, J. Regulation of Enterococcus Faecalis Biofilm Formation and Quorum Sensing Related Virulence Factors with Ultra-Low Dose Reactive Species Produced by Plasma Activated Water. Plasma Chem. Plasma Process. 2019, 39, 35–49. [Google Scholar] [CrossRef]
- Chiappim, W.; Sampaio, A.; Miranda, F.; Petraconi, G.; da Silva Sobrinho, A.; Cardoso, P.; Kostov, K.; Koga-Ito, C.; Pessoa, R. Nebulized Plasma-Activated Water Has an Effective Antimicrobial Effect on Medically Relevant Microbial Species and Maintains Its Physicochemical Properties in Tube Lengths from 0.1 up to 1.0 m. Plasma Process. Polym. 2021, 18, 2100010. [Google Scholar] [CrossRef]
- Chiappim, W.; Sampaio, A.D.G.; Miranda, F.; Fraga, M.; Petraconi, G.; da Silva Sobrinho, A.; Kostov, K.; Koga-Ito, C.; Pessoa, R. Antimicrobial Effect of Plasma-Activated Tap Water on Staphylococcus aureus, Escherichia coli, and Candida albicans. Water 2021, 13, 1480. [Google Scholar] [CrossRef]
- Judée, F.; Simon, S.; Bailly, C.; Dufour, T. Plasma-Activation of Tap Water Using DBD for Agronomy Applications: Identification and Quantification of Long Lifetime Chemical Species and Production/Consumption Mechanisms. Water Res. 2018, 133, 47–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Cheng, X.; Lin, L.; Keidar, M. Cold Atmospheric Plasma Discharged in Water and Its Potential Use in Cancer Therapy. J. Phys. D Appl. Phys. 2016, 50, 015208. [Google Scholar] [CrossRef] [Green Version]
- Zou, X.; Xu, M.; Pan, S.; Gan, L.; Zhang, S.; Chen, H.; Liu, D.; Lu, X.; Ostrikov, K.K. Plasma Activated Oil: Fast Production, Reactivity, Stability, and Wound Healing Application. ACS Biomater. Sci. Eng. 2019, 5, 1611–1622. [Google Scholar] [CrossRef]
- Xu, M.; Li, Y. Infected Wound Healing Using Plasma Activated Oil. IEEE Trans. Plasma Sci. 2019, 47, 4827–4832. [Google Scholar] [CrossRef]
- Pan, S.; Xu, M.; Gan, L.; Zhang, S.; Chen, H.; Liu, D.; Li, Y.; Lu, X. Plasma Activated Radix Arnebiae Oil as Innovative Antimicrobial and Burn Wound Healing Agent. J. Phys. D Appl. Phys. 2019, 52, 335201. [Google Scholar] [CrossRef]
- An, J.Y.; Yong, H.I.; Kim, H.J.; Park, J.Y.; Lee, S.H.; Baek, K.H.; Choe, W.; Jo, C. Estimation of Inactivation Effects against Escherichia coli O157:H7 Biofilm by Different Plasma-Treated Solutions and Post-Treatment Storage. Appl. Phys. Lett. 2019, 114, 073703. [Google Scholar] [CrossRef]
- van Boxem, W.; van der Paal, J.; Gorbanev, Y.; Vanuytsel, S.; Smits, E.; Dewilde, S.; Bogaerts, A. Anti-Cancer Capacity of Plasma-Treated PBS: Effect of Chemical Composition on Cancer Cell Cytotoxicity. Sci. Rep. 2017, 7, 16478. [Google Scholar] [CrossRef] [Green Version]
- Zhou, R.; Li, J.; Zhou, R.; Zhang, X.; Yang, S. Atmospheric-Pressure Plasma Treated Water for Seed Germination and Seedling Growth of Mung Bean and Its Sterilization Effect on Mung Bean Sprouts. Innov. Food Sci. Emerg. Technol. 2019, 53, 36–44. [Google Scholar] [CrossRef]
- Gao, Y.; Francis, K.; Zhang, X. Review on Formation of Cold Plasma Activated Water (PAW) and the Applications in Food and Agriculture. Food Res. Int. 2022, 157, 111246. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Wang, G.; Tian, Y.; Wang, K.; Zhang, J.; Fang, J. Non-Thermal Plasma-Activated Water Inactivation of Food-Borne Pathogen on Fresh Produce. J. Hazard Mater. 2015, 300, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Mandal, R.; Singh, A.; Pratap Singh, A. Recent Developments in Cold Plasma Decontamination Technology in the Food Industry. Trends Food Sci. Technol. 2018, 80, 93–103. [Google Scholar] [CrossRef]
- Herianto, S.; Hou, C.Y.; Lin, C.M.; Chen, H.L. Nonthermal Plasma-Activated Water: A Comprehensive Review of This New Tool for Enhanced Food Safety and Quality. Compr. Rev. Food Sci. Food Saf. 2021, 20, 583–626. [Google Scholar] [CrossRef]
- Katsigiannis, A.S.; Bayliss, D.L.; Walsh, J.L. Cold Plasma Decontamination of Stainless Steel Food Processing Surfaces Assessed Using an Industrial Disinfection Protocol. Food Control 2021, 121, 107543. [Google Scholar] [CrossRef]
- Guo, L.; Xu, R.; Gou, L.; Liu, Z.; Zhao, Y.; Liu, D.; Zhang, L.; Chen, H.; Kong, M.G. Mechanism of Virus Inactivation by Cold Atmospheric-Pressure Plasma and Plasma-Activated Water. Appl. Environ. Microbiol. 2018, 84, e00726-18. [Google Scholar] [CrossRef] [Green Version]
- Whittaker, A.G.; Graham, E.M.; Baxter, R.L.; Jones, A.C.; Richardson, P.R.; Meek, G.; Campbell, G.A.; Aitken, A.; Baxter, H.C. Plasma Cleaning of Dental Instruments. J. Hosp. Infect. 2004, 56, 37–41. [Google Scholar] [CrossRef] [Green Version]
- Abuzairi, T.; Ramadhanty, S.; Fithriaty Puspohadiningrum, D.; Ratnasari, A.; Raden Poespawati, N.; Wigajatri Purnamaningsih, R. Investigation on Physicochemical Properties of Plasma-Activated Water for the Application of Medical Device Sterilization. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2018. [Google Scholar] [CrossRef]
- Qiao, D.; Li, Y.; Pan, J.; Zhang, J.; Tian, Y.; Wang, K. Effect of Plasma Activated Water in Caries Prevention: The Caries Related Biofilm Inhibition Effects and Mechanisms. Plasma Chem. Plasma Process. 2022, 42, 801–814. [Google Scholar] [CrossRef]
- Yang, L.; Niyazi, G.; Qi, Y.; Yao, Z.; Huang, L.; Wang, Z.; Guo, L.; Liu, D. Plasma-Activated Saline Promotes Antibiotic Treatment of Systemic Methicillin-Resistant Staphylococcus aureus Infection. Antibiotics 2021, 10, 1018. [Google Scholar] [CrossRef]
- Jang, J.; Hur, H.G.; Sadowsky, M.J.; Byappanahalli, M.N.; Yan, T.; Ishii, S. Environmental Escherichia coli: Ecology and Public Health Implications—A Review. J. Appl. Microbiol. 2017, 123, 570–581. [Google Scholar] [CrossRef] [Green Version]
- E. coli. Available online: https://www.who.int/news-room/fact-sheets/detail/e-coli (accessed on 21 September 2022).
- Dhanji, H.; Murphy, N.M.; Akhigbe, C.; Doumith, M.; Hope, R.; Livermore, D.M.; Woodford, N. Isolation of Fluoroquinolone-Resistant O25b:H4-ST131 Escherichia coli with CTX-M-14 Extended-Spectrum β-Lactamase from UK River Water. J. Antimicrob. Chemother. 2011, 66, 512–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, J.; Suh, Y.S.; Di, D.Y.W.; Unno, T.; Sadowsky, M.J.; Hur, H.G. Pathogenic Escherichia coli Strains Producing Extended-Spectrum β-Lactamases in the Yeongsan River Basin of South Korea. Environ. Sci. Technol. 2013, 47, 1128–1136. [Google Scholar] [CrossRef] [PubMed]
- Frieri, M.; Kumar, K.; Boutin, A. Antibiotic Resistance. J. Infect. Public Health 2017, 10, 369–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, D.; Wang, S.; Li, B.; Qi, M.; Feng, R.; Li, Q.; Zhang, H.; Chen, H.; Kong, M.G. Effects of Plasma-Activated Water on Skin Wound Healing in Mice. Microorganisms 2020, 8, 1091. [Google Scholar] [CrossRef]
- Xu, Y.; Peng, S.; Li, B.; Wang, S.; Zhang, H.; Li, Q.; Liu, Z.; Guo, B.; Liu, D.; Xu, D. Systematic Safety Evaluation of Cold Plasma-Activated Liquid in Rabbits. Front. Phys. 2021, 9, 481. [Google Scholar] [CrossRef]
- Khlyustova, A.; Maksimov, A. Double Electrical Layer at the Plasma-Solution Interface. Contrib. Plasma Phys. 2013, 53, 481–491. [Google Scholar] [CrossRef]
- Li, Y.; Song, Z.; Zhang, T.; Xu, W.; Ding, C.; Chen, H. Spectral Characteristics of Needle Array-Plate Dielectric Barrier Discharge Plasma and Its Activated Water. J. Spectrosc. 2021, 2021, 9771245. [Google Scholar] [CrossRef]
- Borges, A.C.; Kostov, K.G.; Pessoa, R.S.; de Abreu, G.M.A.; Lima, G.D.M.G.; Figueira, L.W.; Koga-Ito, C.Y. Applications of Cold Atmospheric Pressure Plasma in Dentistry. Appl. Sci. 2021, 11, 1975. [Google Scholar] [CrossRef]
- Medveckã, V.; Omasta, S.; Klas, M.; Mošovskã, S.; Kyzek, S.; Zahoranovã, A. Plasma Activated Water Prepared by Different Plasma Sources: Physicochemical Properties and Decontamination Effect on Lentils Sprouts. Plasma Sci. Technol. 2021, 24, 015503. [Google Scholar] [CrossRef]
- Schmidt, M.; Hahn, V.; Altrock, B.; Gerling, T.; Gerber, I.C.; Weltmann, K.D.; von Woedtke, T. Plasma-Activation of Larger Liquid Volumes by an Inductively-Limited Discharge for Antimicrobial Purposes. Appl. Sci. 2019, 9, 2150. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Idris Muhammad, A.; Hu, Y.; Koseki, S.; Liao, X.; Chen, S.; Ye, X.; Liu, D.; Ding, T. Inactivation Kinetics of Bacillus cereus Spores by Plasma Activated Water (PAW). Food Res. Int. 2020, 131, 109041. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.M.; Ojha, S.; Burgess, C.M.; Sun, D.W.; Tiwari, B.K. Inactivation Efficacy and Mechanisms of Plasma Activated Water on Bacteria in Planktonic State. J. Appl. Microbiol. 2020, 129, 1248–1260. [Google Scholar] [CrossRef] [PubMed]
- Simon, S.; Salgado, B.; Hasan, M.I.; Sivertsvik, M.; Fernández, E.N.; Walsh, J.L. Influence of Potable Water Origin on the Physicochemical and Antimicrobial Properties of Plasma Activated Water. Plasma Chem. Plasma Process. 2022, 42, 377–393. [Google Scholar] [CrossRef]
- Lee, H.R.; Lee, Y.S.; You, Y.S.; Huh, J.Y.; Kim, K.; Hong, Y.C.; Kim, C.H. Antimicrobial Effects of Microwave Plasma-Activated Water with Skin Protective Effect for Novel Disinfectants in Pandemic Era. Sci. Rep. 2022, 12, 5968. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, Q.; Ma, R.; Yu, S.; Wang, K.; Zhang, J.; Fang, J. Reactive Radical-Driven Bacterial Inactivation by Hydrogen-Peroxide-Enhanced Plasma-Activated-Water. Eur. Phys. J. Spec. Top. 2017, 226, 2887–2899. [Google Scholar] [CrossRef]
- Xiang, Q.; Wang, W.; Zhao, D.; Niu, L.; Li, K.; Bai, Y. Synergistic Inactivation of Escherichia coli O157:H7 by Plasma-Activated Water and Mild Heat. Food Control 2019, 106, 106741. [Google Scholar] [CrossRef]
- Xiang, Q.; Fan, L.; Li, Y.; Dong, S.; Li, K.; Bai, Y. A Review on Recent Advances in Plasma-Activated Water for Food Safety: Current Applications and Future Trends. Crit. Rev. Food Sci. Nutr. 2020, 62, 2250–2268. [Google Scholar] [CrossRef]
- Bourke, P.; Ziuzina, D.; Han, L.; Cullen, P.J.; Gilmore, B.F. Microbiological Interactions with Cold Plasma. J. Appl. Microbiol. 2017, 123, 308–324. [Google Scholar] [CrossRef] [Green Version]
- Oh, J.S.; Yajima, H.; Hashida, K.; Ono, T.; Ishijima, T.; Serizawa, I.; Furuta, H.; Hatta, A. In-Situ UV Absorption Spectroscopy for Observing Dissolved Ozone in Water. J. Photopolym. Sci. Technol. 2016, 29, 427–432. [Google Scholar] [CrossRef]
- Oh, J.S.; Szili, E.J.; Ogawa, K.; Short, R.D.; Ito, M.; Furuta, H.; Hatta, A. UV-Vis Spectroscopy Study of Plasma-Activated Water: Dependence of the Chemical Composition on Plasma Exposure Time and Treatment Distance. Jpn. J. Appl. Phys. 2018, 57, 0102B9. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, C.; Liu, D.; He, T.; Guo, L.; Xu, D.; Kong, M.G. Quantifying the Concentration and Penetration Depth of Long-Lived RONS in Plasma-Activated Water by UV Absorption Spectroscopy. AIP Adv. 2019, 9, 015014. [Google Scholar] [CrossRef] [Green Version]
- Zeghioud, H.; Nguyen-Tri, P.; Khezami, L.; Amrane, A.; Assadi, A.A. Review on Discharge Plasma for Water Treatment: Mechanism, Reactor Geometries, Active Species and Combined Processes. J. Water Process Eng. 2020, 38, 101664. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Ramaswamy, R. Application of Emerging Technologies to Control Salmonella in Foods: A Review. Food Res. Int. 2012, 45, 666–677. [Google Scholar] [CrossRef]
- Pavlovich, M.J.; Chang, H.W.; Sakiyama, Y.; Clark, D.S.; Graves, D.B. Ozone Correlates with Antibacterial Effects from Indirect Air Dielectric Barrier Discharge Treatment of Water. J. Phys. D Appl. Phys. 2013, 46, 145202. [Google Scholar] [CrossRef]
- Zhao, Y.M.; Patange, A.; Sun, D.W.; Tiwari, B. Plasma-Activated Water: Physicochemical Properties, Microbial Inactivation Mechanisms, Factors Influencing Antimicrobial Effectiveness, and Applications in the Food Industry. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3951–3979. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Zhou, R.; Prasad, K.; Fang, Z.; Speight, R.; Bazaka, K.; Ostrikov, K. Cold Atmospheric Plasma Activated Water as a Prospective Disinfectant: The Crucial Role of Peroxynitrite. Green Chem. 2018, 20, 5276–5284. [Google Scholar] [CrossRef]
- Park, D.P.; Davis, K.; Gilani, S.; Alonzo, C.A.; Dobrynin, D.; Friedman, G.; Fridman, A.; Rabinovich, A.; Fridman, G. Reactive Nitrogen Species Produced in Water by Non-Equilibrium Plasma Increase Plant Growth Rate and Nutritional Yield. Curr. Appl. Phys. 2013, 13, S19–S29. [Google Scholar] [CrossRef]
- Burlica, R.; Grim, R.G.; Shih, K.Y.; Balkwill, D.; Locke, B.R. Bacteria Inactivation Using Low Power Pulsed Gliding Arc Discharges with Water Spray. Plasma Process. Polym. 2010, 7, 640–649. [Google Scholar] [CrossRef]
- Zhao, Y.M.; Ojha, S.; Burgess, C.M.; Sun, D.W.; Tiwari, B.K. Inactivation Efficacy of Plasma-Activated Water: Influence of Plasma Treatment Time, Exposure Time and Bacterial Species. Int. J. Food Sci. Technol. 2021, 56, 721–732. [Google Scholar] [CrossRef]
- Tsoukou, E.; Bourke, P.; Boehm, D. Understanding the Differences Between Antimicrobial and Cytotoxic Properties of Plasma Activated Liquids. Plasma Med. 2018, 8, 299–320. [Google Scholar] [CrossRef] [Green Version]
- Shaw, P.; Kumar, N.; Kwak, H.S.; Park, J.H.; Uhm, H.S.; Bogaerts, A.; Choi, E.H.; Attri, P. Bacterial Inactivation by Plasma Treated Water Enhanced by Reactive Nitrogen Species. Sci. Rep. 2018, 8, 11268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Liang, Y.; Feng, H.; Ma, R.; Tian, Y.; Zhang, J.; Fang, J. A Study of Oxidative Stress Induced by Non-Thermal Plasma-Activated Water for Bacterial Damage. Appl. Phys. Lett. 2013, 102, 203701. [Google Scholar] [CrossRef]
- Tian, Y.; Ma, R.; Zhang, Q.; Feng, H.; Liang, Y.; Zhang, J.; Fang, J. Assessment of the Physicochemical Properties and Biological Effects of Water Activated by Non-Thermal Plasma Above and Beneath the Water Surface. Plasma Process. Polym. 2015, 12, 439–449. [Google Scholar] [CrossRef]
- Silhavy, T.J.; Kahne, D.; Walker, S. The Bacterial Cell Envelope. Cold Spring Harb. Perspect. Biol. 2010, 2, a000414. [Google Scholar] [CrossRef] [PubMed]
- Mai-Prochnow, A.; Clauson, M.; Hong, J.; Murphy, A.B. Gram Positive and Gram Negative Bacteria Differ in Their Sensitivity to Cold Plasma. Sci. Rep. 2016, 6, 38610. [Google Scholar] [CrossRef] [Green Version]
- Courti, I.; Muja, C.; Maho, T.; Sainct, F.P.; Guillot, P. Impact of Bacterial Growth Phase on Liquid Decontamination Efficiency Using Atmospheric Pressure Plasma. Plasma Med. 2021, 11, 85–104. [Google Scholar] [CrossRef]
- Selzner, N.; Selzner, M.; Graf, R.; Ungethuem, U.; Fitz, J.G.; Clavien, P.A. Water Induces Autocrine Stimulation of Tumor Cell Killing through ATP Release and P2 Receptor Binding. Cell Death Differ. 2004, 11, S172–S180. [Google Scholar] [CrossRef]
- Gönczi, M.; Szentandrássy, N.; Fülöp, L.; Telek, A.; Szigeti, G.P.; Magyar, J.; Bíró, T.; Nánási, P.P.; Csernoch, L. Hypotonic Stress Influence the Membrane Potential and Alter the Proliferation of Keratinocytes in Vitro. Exp. Dermatol. 2007, 16, 302–310. [Google Scholar] [CrossRef]
- Karwowska, M.; Kononiuk, A. Nitrates/Nitrites in Food-Risk for Nitrosative Stress and Benefits. Antioxidants 2020, 9, 241. [Google Scholar] [CrossRef]
- Pullar, J.; Vissers, M.; Winterbourn, C. Living with a Killer: The Effects of Hypochlorous Acid on Mammalian Cells. IUBMB Life 2000, 50, 259–266. [Google Scholar] [CrossRef]
- Nastasa, V.; Pasca, A.S.; Malancus, R.N.; Bostanaru, A.C.; Ailincai, L.I.; Ursu, E.L.; Vasiliu, A.L.; Minea, B.; Hnatiuc, E.; Mares, M. Toxicity Assessment of Long-Term Exposure to Non-Thermal Plasma Activated Water in Mice. Int. J. Mol. Sci. 2021, 22, 11534. [Google Scholar] [CrossRef] [PubMed]
- Table 2. Disinfection & Sterilization Guidelines. Guidelines Library. Infection Control. CDC. Available online: https://www.cdc.gov/infectioncontrol/guidelines/disinfection/tables/table2.html (accessed on 21 September 2022).
- Tsoukou, E.; Bourke, P.; Boehm, D. Temperature Stability and Effectiveness of Plasma-Activated Liquids over an 18 Months Period. Water 2020, 12, 3021. [Google Scholar] [CrossRef]
- Kaper, J.B.; Nataro, J.P.; Mobley, H.L.T. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2004, 2, 123–140. [Google Scholar] [CrossRef] [PubMed]
- Parcells, J.P.; Mileski, J.P.; Gnagy, F.T.; Haragan, A.F.; Mileski, W.J. Using Antimicrobial Solution for Irrigation in Appendicitis to Lower Surgical Site Infection Rates. Am. J. Surg. 2009, 198, 875–880. [Google Scholar] [CrossRef] [PubMed]
- Angenete, E.; Thornell, A.; Burcharth, J.; Pommergaard, H.C.; Skullman, S.; Bisgaard, T.; Jess, P.; Läckberg, Z.; Matthiessen, P.; Heath, J.; et al. Laparoscopic Lavage Is Feasible and Safe for the Treatment of Perforated Diverticulitis with Purulent Peritonitis: The First Results From the Randomized Controlled Trial DILALA. Ann. Surg. 2016, 263, 117–122. [Google Scholar] [CrossRef]
- Tachibana, K.; Nakamura, T. Examination of UV-Absorption Spectroscopy for Analysis of O3, NO2−, and HNO2 Compositions and Kinetics in Plasma-Activated Water. Jpn. J. Appl. Phys. 2020, 59, 056004. [Google Scholar] [CrossRef]
- SO—ISO 10993-5:2009; Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity. International Organization for Standardization: Geneve, Switzerland, 2009. Available online: https://www.iso.org/standard/36406.html (accessed on 21 September 2022).
Sample | Plasma Exposure Time (min) | pH (±0.2) | ORP (±5.0 mV) | TDS (±5.0 ppm) | σ (±5 μS/cm) |
---|---|---|---|---|---|
PAW-TAP | 0.0 | 6.60 | 19 | 40 | 50 |
1.0 | 5.56 | 83 | 50 | 70 | |
5.0 | 3.55 | 193 | 160 | 220 | |
30.0 | 3.06 | 221 | 330 | 470 | |
60.0 | 2.57 | 250 | 720 | 720 | |
PAW-DI | 0.0 | 5.10 | 106 | 10 | 10 |
1.0 | 4.00 | 169 | 40 | 50 | |
5.0 | 3.30 | 208 | 170 | 240 | |
30.0 | 2.95 | 228 | 450 | 310 | |
60.0 | 2.47 | 239 | 560 | 800 | |
PAW-DIS | 0.0 | 6.10 | 55 | 10 | 10 |
1.0 | 4.02 | 168 | 60 | 80 | |
5.0 | 3.41 | 202 | 130 | 190 | |
30.0 | 2.94 | 228 | 660 | 950 | |
60.0 | 2.42 | 243 | 810 | 1160 | |
PAW-FIL | 0.0 | 6.90 | 6 | 70 | 110 |
1.0 | 4.94 | 60 | 80 | 115 | |
5.0 | 3.50 | 198 | 140 | 200 | |
30.0 | 3.00 | 225 | 340 | 500 | |
60.0 | 2.62 | 238 | 630 | 900 | |
PAW-SAL | 0.0 | 7.20 | 7 | 9320 | 13,420 |
1.0 | 3.70 | 188 | 9930 | 14,120 | |
5.0 | 3.50 | 210 | 10,180 | 14,630 | |
30.0 | 2.79 | 237 | 12,900 | 18,460 | |
60.0 | 2.52 | 253 | 17,400 | >20,000 |
Sample | Exposure Time (min) | pH (±0.09) | H2O2 (mg/L) | HNO2 (mg/L) | NO2− (mg/L) | NO3− (mg/L) |
---|---|---|---|---|---|---|
PAW-TAP | 1.0 | 5.56 | 15.0 | 0.2 | 25.0 | 24.0 |
5.0 | 3.55 | 80.3 | 33.5 | 47.6 | 53.3 | |
30.0 | 3.06 | 127.3 | 106.0 | 48.6 | 120.4 | |
60.0 | 2.57 | 111.7 | 374.4 | 55.6 | 69.3 | |
PAW-DI | 1.0 | 4.00 | 9.3 | 0.1 | 9.2 | 7.3 |
5.0 | 3.30 | 76.5 | 57.9 | 46.2 | 47.4 | |
30.0 | 2.95 | 82.0 | 128.4 | 45.8 | 106.3 | |
60.0 | 2.47 | 160.3 | 525.0 | 62.0 | 69.3 | |
PAW-DIS | 1.0 | 4.02 | 23.7 | 2.2 | 9.4 | 11.0 |
5.0 | 3.41 | 65.1 | 20.5 | 21.0 | 82.1 | |
30.0 | 2.94 | 95.8 | 73.6 | 25.6 | 193.7 | |
60.0 | 2.42 | 86.6 | 201.3 | 21.2 | 94.8 | |
PAW-FIL | 1.0 | 4.94 | 15.0 | 0.7 | 24.7 | 23.6 |
5.0 | 3.50 | 48.8 | 36.5 | 46.1 | 36.6 | |
30.0 | 3.00 | 100.4 | 105.9 | 42.3 | 111.3 | |
60.0 | 2.62 | 157.2 | 446.3 | 74.4 | 43.1 | |
PAW-SAL | 1.0 | 3.70 | 22.0 | 5.5 | 11.0 | 12.0 |
5.0 | 3.50 | 58.1 | 27.1 | 38.6 | 78.9 | |
30.0 | 2.79 | 106.9 | 175.0 | 43.2 | 165.2 | |
60.0 | 2.52 | 140.5 | 432.7 | 57.3 | 113.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sampaio, A.d.G.; Chiappim, W.; Milhan, N.V.M.; Botan Neto, B.; Pessoa, R.; Koga-Ito, C.Y. Effect of the pH on the Antibacterial Potential and Cytotoxicity of Different Plasma-Activated Liquids. Int. J. Mol. Sci. 2022, 23, 13893. https://doi.org/10.3390/ijms232213893
Sampaio AdG, Chiappim W, Milhan NVM, Botan Neto B, Pessoa R, Koga-Ito CY. Effect of the pH on the Antibacterial Potential and Cytotoxicity of Different Plasma-Activated Liquids. International Journal of Molecular Sciences. 2022; 23(22):13893. https://doi.org/10.3390/ijms232213893
Chicago/Turabian StyleSampaio, Aline da Graça, William Chiappim, Noala Vicensoto Moreira Milhan, Benedito Botan Neto, Rodrigo Pessoa, and Cristiane Yumi Koga-Ito. 2022. "Effect of the pH on the Antibacterial Potential and Cytotoxicity of Different Plasma-Activated Liquids" International Journal of Molecular Sciences 23, no. 22: 13893. https://doi.org/10.3390/ijms232213893
APA StyleSampaio, A. d. G., Chiappim, W., Milhan, N. V. M., Botan Neto, B., Pessoa, R., & Koga-Ito, C. Y. (2022). Effect of the pH on the Antibacterial Potential and Cytotoxicity of Different Plasma-Activated Liquids. International Journal of Molecular Sciences, 23(22), 13893. https://doi.org/10.3390/ijms232213893