1. Introduction
The routing problem has always been a highlight in combinatorial optimizations. Great importance has been attached to it, not only in the transportation field, but also in many other industries such as telecommunications, manufacturing and the Internet [
2]. The routing problem aims at improving the performance of a system by reasonably distributing the flow of the object (data, signal or products) in it. As for the multimodal routing problem, it is defined as selecting the best routes to move commodities from their origins to their destinations through a multimodal service network. The multimodal routing problem arises under the following conditions.
The remarkable growth of international trade in recent years stimulates the worldwide commodity circulation, which significantly expands the geographical scale of the transportation network, extends the freight transportation distance, and leads to a more complex transportation environment. All these tendencies present great challenges for decision makers from various aspects including transportation cost, efficiency, reliability and so on. Meanwhile, because of the integrative combination of the respective advantages of different transportation service modes, multimodal transportation has been proved to be a more cost-efficient [
3] and environment-friendly [
4] means compared with the traditional uni-modal transportation in a long-haul transportation setting. Therefore, large numbers of enterprises decide to adopt multimodal transportation schemes to transport their products or materials. According to the relevant statistics, the volume fulfilled by the multimodal transportation accounts for 80% of the total freight volume in North America [
5]. However, the logistics cost is still high, and accounts for approximately 30%–50% of the total production cost of enterprises [
6]. Consequently, lowering transportation costs by advanced multimodal routing becomes an effective approach for enterprises to raise profits and maintain competitiveness in the global market [
2].
By considering the practical demand of lowering the transportation costs by selecting the best multimodal routes, many researchers have devoted themselves to the multimodal routing problem (or intermodal routing problem) in recent decades. Barnhart and Ratliff [
7] developed a foundational framework on modeling intermodal routing, and introduced a solution procedure with matching to solve the routing problem from Cincinnati to Atlanta/Chattanooga. Boardman
et al. [
8] designed a real-time intermodal routing decision support system by incorporating the k-shortest path double-swap method with database and user interface. Lozano and Storchi [
9], Lam and Srikanthan [
10] and Boussedjra
et al. [
11] highlighted the intermodal/multimodal shortest path problem. They separately developed an
ad hoc modified chronological algorithm, clustering technique accelerated k-shortest algorithm and multi-label label correcting shortest path algorithm, to identify the shortest path in the intermodal/multimodal service network. Zhang and Guo [
12] described the physical structure of the multimodal service network, and proposed a foundational network assignment model for the multimodal routing problem. Zhang
et al. [
13] formulated the multimodal routing problem as a generalized shortest path problem, built a 0–1 integer programming model based on Reddy and Kasilingam’s work [
14], and adopted Dijkstra algorithm to obtain the optimal solution of the model. Winebrake
et al. [
15] developed a geospatial model to find optimal routes with different objectives in the intermodal transportation network. The construction and solution of the model were implemented by ArcGIS software. Kim
et al. [
16] and Chang
et al. [
17] both analyzed the intermodal sea–truck routing problem for container transportation in South Korea, and formulated classical programming models to solve the empirical cases in South Korea. The proposed models were solved by standard mathematical programming software. Liu
et al. [
18] explored the dynamic path optimization for multimodal service network. The network deformation method was used in their study to transform the initial network into a directed simple graph. This enabled the problem to be effectively solved by a modified Dijkstra algorithm. Cho
et al. [
19] presented a weighted constrained shortest path model and a label setting algorithm to draw the optimal international intermodal routing. They applied the proposed method to a real-world routing case from Busan to Rotterdam. Sun and Lang [
20] as well as Xiong and Wang [
21] separately discussed the bi-objective optimization for the multimodal routing problem that aims at minimizing transportation costs and transportation time. The normalized normal constraint method and Taguchi genetic algorithm were utilized to generate the Pareto frontier of the problem. The former also conducted a sensitivity analysis of the Pareto frontier with respect to demand and supply.
Above all, substantial accomplishments have been achieved in the multimodal routing problem. However, some research potential still exists.
(1) The majority of the current studies concentrated on the single commodity flow routing problem. In practice, decision makers usually need to plan routes for multiple commodities in their planning horizons. In addition, the best routing for multiple commodities is not the simple set of the respective independent best routes for all commodities, because the multimodal service network is usually capacitated. Therefore, it is necessary to combine the multicommodity flow with the multimodal routing.
(2) In the current studies, rail schedules are rarely considered in the model formulation. Many studies, especially the domestic ones, formulated the rail service as a time-flexible pattern that is similar to the road service, and hence simplified the connection between different transportation services in the terminals as a continuous “arrival-transshipment-departure” procedure. Actually, rail services are organized by predetermined schedules, especially in China, and train schedules will restrict the routing because of space-time feasibility. If the transportation of a commodity along a route cannot match the schedules of the rail services on it, the planned route is infeasible in the practice. Consequently, consideration of schedules in routing modeling is quite worthwhile.
(3) Multimodal routing in most current studies was oriented on the certain customer information, which means all customer information is determined and known when making routing decisions. However, as has been claimed in many studies as well as indicated in the practice, customer information, especially their demands, is difficult to determine during the planning period. Many studies on other transportation problems, e.g., the vehicle routing problem [
22,
23,
24] and service network design problem [
25,
26], have all paid great attention to the uncertain issues from the fuzzy or stochastic viewpoint. Hence uncertain customer information is also a characteristic that should not be neglected in the multimodal routing problem.
The first two issues above have already been explored in our previous study (see Reference [
1]). In this study, we will focus on integrating the fuzzy customer information problem into this previous study in order to develop the initial problem into its extended version: schedule-constrained multicommodity multimodal routing problem with fuzzy customer information.
Similar to the transportation scenario constructed in Reference [
1], the rail service (the schedule-based service) in the multimodal service network specifically refers to the “point-to-point” block container train service. This kind of service is operated directly and periodically from its loading organization station to its unloading organization station. For the convenience of modeling, the same block container train in different periods is treated as a different one. The road service is formulated as an uncapacitated time-flexible service, which matches the superiority of the road service (container trucks) in its organization flexibility. Transshipment is not necessary when the commodity arrives at and then departs from a terminal by road service, and a road service route can be covered entirely or partly in the routing. For the convenience of modeling, a road service can be divided into several segments, e.g., a directed road service route (
g,
h,
i,
j) is divided into sub segments (
g,
h), (
g,
i), (
g,
j), (
h,
i), (
h,
j), and (
i,
j).
For the convenience of readability, we briefly introduce the schedule Constraints (1)–(4) resulting from the actual transportation practice that the operation of block container trains should follow their predetermined schedules. For detailed relative information, we can refer to Reference [
1].
(1) If the commodity plans to be moved by rail service from the current terminal (loading organization station) to the successor terminal (unloading organization station), its arrival time at the current terminal should not be later than the upper bound of the loading operation time window of the block container train at the same terminal.
(2) In the above situation, if the arrival time of the commodity at the terminal is earlier than the lower bound of the operation time window of the block container train at the same terminal, it should wait until the lower bound of the time window.
(3) After being loaded on the train, the commodity should wait until the departure time of the train. Then it departs from the current terminal to the successor terminal, and arrives at the successor terminal at the arrival time of the train.
(4) The commodity should wait until the lower bound of the unloading operation time window of the train at the successor terminal, and then gets unloaded from it.
For the uncertain customer information problem, we will explain it in detail by using a whole section. After defining the symbols that will be used in the model formulation (
Section 2), we organize the remaining sections of this study as follows. In
Section 3, we analyze the uncertain characteristics of the customer information from the fuzzy viewpoint, and propose fuzzy demands and fuzzy soft due date time windows to define the uncertainty. In
Section 4, a fuzzy chance-constrained nonlinear programming model for the routing problem is established based on fuzzy possibility theory. In
Section 5, we introduce a crisp equivalent method and a linearization method to transform the proposed model into its equivalent linear programming form, after which the routing problem can be effectively solved by the standard mathematical programming software. In
Section 6, a numerical case is presented to demonstrate the feasibility of the proposed model, and the sensitivity of the best solution with respect to the values of the confidence levels is also examined. Finally, conclusions of this study are drawn in
Section 7.
2. Notations
N: terminal set in the multimodal service network, h, i, and j are the terminal indexes;
A: directed transportation arc set in the multimodal service network, and ;
K: commodity set, and k is the commodity index;
: set of rail services on (i, j);
: set of road services on (i, j);
S: transportation service set in the multimodal service network, s and r are the service indexes, where is transportation service set on (i, j), and ;
: predecessor terminal set to terminal i, and ;
: successor terminal set to terminal i, and ;
: origin terminal of commodity k;
: destination terminal of commodity k;
: release time of commodity k from its origin terminal;
: loading/unloading operation time window of rail service s at terminal i;
, : scheduled departure time and scheduled arrival time of service s from terminal i and at terminal j on (i, j);
: available carrying capacity of rail service s at terminal i, unit: TEU;
: transportation time of service s on (i, j), especially for , the effective transportation time , unit: h;
: unit transportation costs of by service s on (i, j), unit: ¥/TEU;
: unit loading/unloading operation costs of service s, unit: ¥/TEU;
: unit inventory costs of rail service s, unit: ¥/TEU-h;
: additional charges for picking up the unit commodity from shipper at a rail terminal by rail service at origin, unit: ¥/TEU;
: a 0-1 indicating parameter, if the above service is demanded, = 1, otherwise = 0;
: additional charges for delivering the unit commodity from rail terminal to receiver by rail service at destination, unit: ¥/TEU;
: a 0-1 indicating parameter, if the above service is demanded, = 1, otherwise = 0;
π: inventory period free of charge, unit: h;
M: a large enough positive number;
: 0-1 variable, If commodity k is moved on (i, j) by service s, = 1, otherwise = 0 (decision variable);
: arrival time of commodity k at terminal i (decision variable);
: charged inventory time at terminal i before being moved on (i, j) by rail service s, unit: h (decision variable).
6. Numerical Case Study and Sensitivity Analysis
In this section, we design a numerical case to demonstrate the feasibility of the proposed method in solving the multicommodity multimodal routing problem with fuzzy customer information. The multimodal service network in this case is shown in
Figure 4. Before solving the problem, all the values regarding the schedules, release times and due dates of the multiple commodities are all discretized into real numbers.
The schedules of the block container trains operated in the multimodal transportation are presented in
Table 1.
Transportation costs (unit: ¥/TEU) and times (unit: h) en route of the services in the multimodal service network are given in
Table 2.
The loading/unloading costs of rail services and of road services are 195 ¥/TEU and 25 ¥/TEU, respectively. The inventory costs of rail services are 3.125 ¥/TEU-h, and the inventory period free of charge is 48 h. The additional rail service origin-pickup and destination-delivery costs are 225 ¥/TEU and 337.5 ¥/TEU, respectively.
In the numerical case, there are six commodity flows that need to be moved through the multimodal service network, and their information is presented in
Table 3.
Let
α = 0.9,
β = 0.9 and
γ = 0.9, and by using the Branch-and-Bound algorithm implemented by Lingo 12 on a Lenovo Laptop with Intel Core i5 3235 M 2.60 GHz CPU and 4 GB RAM, we can obtain the best routes for the six commodity flows (see in
Table 4). The computation lasts 1 s. Note that there is no transshipment at the terminal with an asterisk.
To further discuss the numerical case, we will analyze the sensitivity of the best solution of M3 with respect to the values of the three confidence levels. First we examine how the confidence level α and β influence the multicommodity multimodal routing. In order to explain the performance of the routing by comparing the planned costs (best solution of M3), the actual minimal costs, and actual costs, we should first simulate the actual multimodal transportation case by randomly generating deterministic volumes of the commodity flows according to their triangular fuzzy volumes. The fuzzy simulation is as follows.
For k=1:|K| |
Generate a random number ; |
Calculate its membership according to Equation (20); |
Generate a random number ∈[0, 1]; |
If ; |
→the actual volume of commodity k; |
End |
End |
After T fuzzy simulations (in this study, T = 30), we can obtain T deterministic volume sets for the commodity set. The explored problem is hence transformed into a routing problem in a certain environment. For the T deterministic volume sets, first we calculate their actual best routes and corresponding actual minimal costs by solving M1 with Constraint Sets (10) and (13) linearized, and then get their average actual minimal costs. Second, we calculate their respective actual costs when moving the commodities along the planned routes, and then obtain their average actual costs.
In this sensitivity analysis, we keep
γ = 0.9, and let
α vary from 0.3 to 0.6 with step size of 0.1, and
β from 0.1 to 1.0 with step size of 0.1, the sensitivity of the three kinds of costs with respect to the values of
α and
β is shown in
Figure 5.
As we can see from
Figure 5: (1) when confidence level
α is given, larger values of confidence level
β will lead to larger planned costs, and the increase of the planned costs is stepwise. Similarly, when confidence level
β is given, larger values of confidence level
α will also lead to larger planned costs, and the increase of the planned costs in this situation is linear; (2) The actual costs are only related to confidence level
β. The values of confidence level α do not influence the actual costs. Similar to the variation of the planned costs, larger values of confidence level
β will lead to larger planned costs, and the increase of the actual costs is stepwise; (3) The actual minimal costs is not related to confidence level α and confidence level
β.
It should be noted that too large or too small values of α and of β will increase the gaps among the planned costs, the actual costs and the actual minimal costs. In this numerical case, the best value of confidence level α is 0.5, and the best value of confidence level β is 0.3. Therefore, in the practical fuzzy multicommodity multimodal routing, in order to make better fuzzy multicommodity multimodal routing decision to meet the practice, the values of the two confidence levels should be moderate, to which great importance ought to be attached.
Then, to examine how customer satisfaction level
γ influences the multicommodity multimodal routing, we conduct the sensitivity of the best solution of M3 with respect to the value of
γ. Let
γ vary from 0.4 to 1.0 with step size of 0.05, and keeping
α = β = 0.9, we can obtain
Figure 6 that illustrates the result of the sensitivity analysis.
As we can see from
Figure 6, considering a reasonable customer satisfaction level range, when the customer satisfaction level is lower than 0.6 (
γ < 0.6), its variation has only a slight influence on the multicommodity multimodal routing. However, when
γ ≥ 0.6,
Figure 6 shows that larger values of confidence level
γ will result in a larger value of the total generalized costs of the routing, and the increase of the total generalized costs is stepwise. The sensitivity analysis above clearly indicates that restricting the multicommodity multimodal routing to meet stricter customer satisfaction levels will increase the costs of the multimodal service network system to some degree, which is logical according to practical experience.