Pros and Cons of (NH4)2S Solution Treatment of p-GaN/Metallization Interface: Perspectives for Laser Diode
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Procedure
2.2. Characterization Methods
- Transmission Line Method (TLM): used to ascertain the specific contact resistance by analyzing the I–V characteristics.
- Scanning Electron Microscopy (SEM): conducted with a Zeiss microscope (Carl Zeiss NTS Ltd., Oberkochen, Germany) at 4 kV to visualize the surface morphology of the etched semiconductor and annealed metallization.
- Atomic Force Microscopy (AFM): performed with a Dimension Nanoscope IV (Digital Instruments, currently Brucker, Tonawanda, NY, USA) to examine surface topography.
- Transmission Electron Microscopy (TEM): used to observe alterations in the metallization and GaN structures post-treatment with (NH4)2S-based solution.
- Energy Dispersive X-ray Spectroscopy (EDX): provided insights into the contact composition, metal distribution, and interface state of the GaN/Ni/Au/Pt contact system.
- Conductive Atomic Force Microscopy (c-AFM): the conductivity of the substrate surface was measured with Ntegra microscope (NTMdt, Moscow, Russia) under air ambient conditions.
2.3. Detailed Analytical Techniques
3. Results and Discussion
3.1. Morphology State
3.2. Electrical Properties
3.3. Microstructure of Annealed Contacts
- Morphological reorganization of the contact system.
- Formation of a more complex metallization structure.
- Complete oxidation of nickel into NiO.
- Extensive diffusion of metal species leading to the formation of the Pt-Au/Ni solid mixture.
- Absence of a heterostructural intermediate semiconductor layer at the GaN/metallization interface.
- Lack of the chemical reaction between the metals and the p-GaN substrate.
- Presumably, void generation in the Au layer and migration during annealing.
- Morphological and compositional transformation of the contact system.
- Formation of a GaN-Au intermediate layer at the interface (see Supplementary Materials Figure S2).
- Uneven diffusion of metal species.
- Formation of an Au-Ni solid solution with inclusions of pure Ni islands.
- Fractional oxidation of nickel into oxide, revealing a multilayer structure.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, N.; Kumar, A.; Chand, F. Surface states passivation in GaN single crystal by ruthenium solution. Appl. Phys. Lett. 2023, 122, 013503. [Google Scholar] [CrossRef]
- Kang, M.-G.; Sa, S.-H.; Park, H.-H.; Suh, K.-S.; Lee, J.-L. Sulfidation mechanism of pre-cleaned GaAs surface using (NH4)2Sx solution. Mater. Sci. Eng. B 1997, 46, 65–68. [Google Scholar] [CrossRef]
- Pawan, T. Review of sulphur interaction based GaAs surface passivation and its potential application in magnetic tunnel junction based molecular spintronics devices (MTJMSD). arXiv 2021, arXiv:2105.11638. [Google Scholar] [CrossRef]
- Grodzicki, M.; Moszak, K.; Hommel, D.; Bell, G.R. Bistable Fermi level pinning and surface photovoltage in GaN. Appl. Surf. Sci. 2020, 533, 147416. [Google Scholar] [CrossRef]
- Mao, W.; Cui, C.; Xiong, H.; Zhang, N.; Liu, S.; Dou, M.; Song, L.; Yang, D.; Pi, X. Surface defects in 4H-SiC: Properties, characterizations and passivation schemes. Semicond. Sci. Technol. 2023, 38, 073001. [Google Scholar] [CrossRef]
- Laukkanen, P.; Punkkinen, M.P.J.; Kuzmin, M.; Kokko, K.; Lång, J.; Wallace, R.M. Passivation of III–V surfaces with crystalline oxidation. Appl. Phys. Rev. 2021, 8, 011309. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, R.; Li, F.; Tian, A.; Liu, J.; Yang, H. Surface State Effect on p-InGaN/GaN Nonalloyed Ohmic Contact Characteristics. (Preprint Version), 2022, 1–16. Available online: https://ssrn.com/abstract=4280310 (accessed on 25 July 2024).
- Eyckeler, M.; Mönch, W.; Kampen, T.U.; Dimitrov, R.; Ambacher, O.; Stutzmann, M. Negative electron affinity of cesiated p-GaN (0001) surfaces. J. Vac. Sci. Technol. B 1998, 16, 2224–2228. [Google Scholar] [CrossRef]
- Cao, X.A.; Teetsov, J.A.; Shahedipour-Sandvik, F.; Arthur, S.D. Microstructural origin of leakage current in GaN/InGaN light-emitting diodes. J. Cryst. Growth 2004, 264, 172–177. [Google Scholar] [CrossRef]
- Lebedev, M.V.; Savchenko, G.M.; Averkiev, N.S. Dipole modification of the surface electronic structure of III–V semiconductors. Solid State Commun. 2024, 384, 115484. [Google Scholar] [CrossRef]
- Simpkins, B.S.; Yu, E.T.; Waltereit, P.; Speck, J.S. Correlated scanning Kelvin probe and conductive atomic force microscopy studies of dislocations in gallium nitride. J. Appl. Phys. 2003, 94, 1448–1453. [Google Scholar] [CrossRef]
- Lochthofen, A.; Mertin, W.; Bacher, G.; Hoeppel, L.; Bader, S.; Off, J.; Hahn, B. Investigation of the electrical activity of V-defects in GaN using scanning force microscopy. In Proceedings of the Gallium Nitride Materials and Devices IV, Proc. SPIE., San Jose, CA, USA, 24 January 2009; Volume 7216, p. 721610. [Google Scholar] [CrossRef]
- Greco, G.; Iucolano, F.; Roccaforte, F. Ohmic contacts to Gallium Nitride materials. Appl. Surf. Sci. 2016, 383, 324–345. [Google Scholar] [CrossRef]
- Piotrowska, A.; Guivarc’h, A.; Pelous, G. Ohmic contacts to III–V compound semiconductors: A review of fabrication techniques. Solid-State Electron. 1983, 26, 179–197. [Google Scholar] [CrossRef]
- Zhon, H.; Liu, Z.; Shi, L.; Xu, G.; Fan, Y.; Huang, Z.; Wang, J.; Ren, G.; Xu, K. Graphene in ohmic contact for both n-GaN and p-GaN. Appl. Phys. Lett. 2014, 104, 212101. [Google Scholar] [CrossRef]
- Kirchheim, R.; Pundt, A. Hydrogen in Metals. In Physical Metallurgy, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 2597–2705. [Google Scholar] [CrossRef]
- Van de Walle, C.G.; Johnson, N.M. Hydrogen in III–V Nitrides. Semicond. Semimet. Treat. 1999, 57, 157–184. [Google Scholar] [CrossRef]
- Aydil, E.S.; Gottscho, R.A. Plasma Passivation of III-V Semiconductor Surfaces. Mater. Sci. Forum 1993, 148–149, 159–188. [Google Scholar] [CrossRef]
- Diale, M.; Auret, F.D.; van der Berg, N.G.; Odendaal, R.Q.; Roos, W.D. Analysis of GaN cleaning procedures. Appl. Surf. Sci. 2005, 246, 279–289. [Google Scholar] [CrossRef]
- Lebedev, M.V. Modification of the Atomic and Electronic Structure of III–V Semiconductor Surfaces at Interfaces with Electrolyte Solutions (Review). Semiconductors 2020, 54, 699–741. [Google Scholar] [CrossRef]
- Cuypers, D.; Fleischmann, C.; van Dorp, D.H.; Brizzi, S.; Tallarida, M.; Müller, M.; Hönicke, P.; Billen, A.; Chintala, R.; Conard, T.; et al. Sacrificial Self-Assembled Monolayers for the Passivation of GaAs (100) Surfaces and Interfaces. Chem. Mater. 2016, 28, 5689–5701. [Google Scholar] [CrossRef]
- Zhou, L.; Bo, B.; Yan, X.; Wang, C.; Chi, Y.; Yang, X. Brief Review of Surface Passivation on III-V Semiconductor. Crystals 2018, 8, 226. [Google Scholar] [CrossRef]
- Wang, X.; Hou, X.-Y.; Li, Z.-S.; Chen, X.-Y. X-ray Photoelectron Spectroscopic Studies of Sulphur-passivated GaAs Surfaces. Surf. Interface Anal. 1996, 24, 564–568. [Google Scholar] [CrossRef]
- Pawan, T. New value of old knowledge: Sulphur-based GaAs surface passivation and potential GaAs application in molecular electronics and spintronics. Mater. Res. Express 2023, 10, 042003. [Google Scholar] [CrossRef]
- Oigawa, H.; Shigekawa, H.; Nannichi, Y. Surface Passivation of III-V Compound Semiconductors with Chalcogen Atoms. Mater. Sci. Forum 1995, 185–188, 191–198. [Google Scholar] [CrossRef]
- Hedieh, M.; Salehi, A.; Mastelaro, V.R. XPS study of long-term passivation of GaAs surfaces using saturated ammonium sulfide solution under optimum condition. Russ. J. Electrochem. 2021, 57, 471–477. [Google Scholar] [CrossRef]
- Yang, J.-K.; Park, H.-H.; Kim, H.; Jang, H.W.; Lee, J.-L.; Im, S. Improved performance of GaAs MESFETs through sulfidation of Pt/GaAs interface. Thin Solid Films 2004, 447–448, 626–631. [Google Scholar] [CrossRef]
- Besser, R.S.; Helms, C.R. Comparison of surface properties of sodium sulfide and ammonium sulfide passivation of GaAs. J. Appl. Phys. 1989, 65, 4306–4310. [Google Scholar] [CrossRef]
- Robinson, J.A.; Mohney, S.E. Characterization of sulfur passivated n-GaSb using transmission electron microscopy and the influence of passivationon ohmic contact resistance. J. Appl. Phys. 2004, 96, 2684–2688. [Google Scholar] [CrossRef]
- Bessolov, V.N.; Konenkova, E.V.; Lebedev, M.V. Comparison of the effectiveness of GaAs surface passivation with sodium and ammonium sulfide solutions. Semicond. Insul. 1997, 39, 54–57. [Google Scholar] [CrossRef]
- Martinez, G.L.; Curiel, M.R.; Skromme, B.J.; Molnar, R.J. Surface recombination and sulfide passivation of GaN. J. Electron. Mater. 2000, 29, 325–331. [Google Scholar] [CrossRef]
- Nörenberg, C.; Myhra, S.; Dobson, P.J. Scanning probe microscopy studies on the growth of palladium and nickel on GaN(0001). J. Phys. Conf. Ser. 2010, 209, 012021. [Google Scholar] [CrossRef]
- Ohno, T. Sulfur passivation of GaAs surfaces. Phys. Rev. B 1991, 44, 6306–6311. [Google Scholar] [CrossRef]
- Brennan, B.; Milojevic, M.; Hinkle, C.L.; Aguirre-Tostado, F.S.; Hughes, G.; Wallace, R.M. Optimisation of the ammonium sulphide (NH4)2S passivation process on In0.53Ga0.47As. Appl. Surf. Sci. 2011, 257, 4082–4090. [Google Scholar] [CrossRef]
- Mahmoodnia, H.; Salehi, A.; Mastelaro, V.R. GaAs semiconductor passivated by (NH4)2Sx: Analysis of different passivation methods using electrical characteristics and XPS measurements. Semiconductors 2020, 54, 817–826. [Google Scholar] [CrossRef]
- Fan, J.-F.; Oigawa, H.; Nannichi, Y. The effect of (NH4)2S treatment on the interface characteristics of GaAs MIS structures. Jpn. J. Appl. Phys. 1988, 27, L1331–L1333. [Google Scholar] [CrossRef]
- Levchenko, I.; Kryvyi, S.; Kamińska, E.; Grzanka, S.; Grzanka, E.; Marona, Ł.; Perlin, P. Palladium-based contacts on p-GaN and their application in laser diodes. Materials 2023, 16, 6568. [Google Scholar] [CrossRef]
- Du, X.; Guo, Z.; Meng, Y.; Zhao, L.; Li, X.; Feng, R.; Zhao, W.; Zhong, H. Effects of surface properties of GaN semiconductors on. Heliyon 2023, 9, e18150. [Google Scholar] [CrossRef]
- Douglass, K.; Hunt, S.; Teplyakov, A.; Opila, R.L. Surface cleaning procedures for thin films of indium gallium nitride grown on sapphire. Appl. Surf. Sci. 2010, 257, 1469–1472. [Google Scholar] [CrossRef]
- Konenkova, E.V. Modification of GaAs(100) and GaN(0001) surfaces by treatment in alcoholic sulfide solutions. Vacuum 2002, 67, 43–52. [Google Scholar] [CrossRef]
- Greco, G.; Prystawko, P.; Leszczyński, M.; Lo Nigro, R.; Raineri, V.; Roccaforte, F. Electro-structural evolution and Schottky barrier height in annealed Au/Ni contacts onto p-GaN. J. Appl. Phys. 2011, 110, 123703. [Google Scholar] [CrossRef]
- Trong, D.N.; Long, V.C.; Ţălu, Ş. The Structure and Crystallizing Process of NiAu Alloy: A Molecular Dynamics Simulation Method. J. Compos. Sci. 2021, 5, 18. [Google Scholar] [CrossRef]
- Spradlin, J.; Doǧan, S.; Xie, J.; Molnar, R.; Baski, A.A.; Morkoç, H. Investigation of forward and reverse current conduction in GaN films by conductive atomic force microscopy. Appl. Phys. Lett. 2004, 84, 4150–4152. [Google Scholar] [CrossRef]
- Khan, I.H.; Francombe, M.H. Structure and Oxidation of Thin Gold-Nickel Alloy Films. J. Appl. Phys. 1965, 36, 1699–1706. [Google Scholar] [CrossRef]
- Koide, Y.; Maeda, T.; Kawakami, T.; Fujita, S.; Uemura, T.; Shibata, N.; Murakami, M. Effects of annealing in an oxygen ambient on electrical properties of ohmic contacts to p-type GaN. J. Electron. Mater. 1999, 28, 341–346. [Google Scholar] [CrossRef]
- Huh, C.; Kim, S.-W.; Kim, H.-S.; Lee, I.-H.; Park, S.-J. Effective sulfur passivation of an n-type GaN surface by an alcohol-based sulfide solution. J. Appl. Phys. 2000, 87, 4591–4593. [Google Scholar] [CrossRef]
- Eassa, N.; Murape, D.M.; Neethling, J.H.; Betz, R.; Coetsee, E.; Swart, H.C.; Venter, A.; Botha, J.R. Chalcogen based treatment of InAs with [(NH4)2S/(NH4)2SO4]. Surf. Sci. 2011, 605, 994–999. [Google Scholar] [CrossRef]
- Murape, D.M.; Eassa, N.; Neethling, J.H.; Betz, R.; Coetsee, E.; Swart, H.C.; Botha, J.R.; Venter, A. Treatment for GaSb surfaces using a sulphur blended (NH4)2S/(NH4)2SO4 solution. Appl. Surf. Sci. 2012, 258, 6753–6758. [Google Scholar] [CrossRef]
- Seager, C.H.; Myers, S.M.; Wright, A.F.; Koleske, D.D.; Allerman, A.A. Drift, diffusion, and trapping of hydrogen in p-type GaN. J. Appl. Phys. 2002, 92, 7246–7252. [Google Scholar] [CrossRef]
- Ofuonye, B.; Lee, J.; Yan, M.; Sun, C.; Zuo, J.-M.; Adesida, I. Electrical and microstructural properties of thermally annealed Ni/Au and Ni/Pt/Au Schottky contacts on AlGaN/GaN heterostructures. Semicond. Sci. Technol. 2014, 29, 095005. [Google Scholar] [CrossRef]
- Available online: https://www.samaterials.com/thermal-expansion-coefficient-metals-alloys-and-common-materials.html (accessed on 12 July 2024).
- Qiao, D.; Yu, L.S.; Lau, S.S.; Lin, J.Y.; Jiang, H.X.; Haynes, T.E. A study of the Au/Ni ohmic contact on p-GaN. J. Appl. Phys. 2000, 88, 4196–4200. [Google Scholar] [CrossRef]
- Hull, B.A.; Mohney, S.E.; Venugopalan, H.S.; Ramer, J.C. Influence of oxygen on the activation of p-type GaN. Appl. Phys. Lett. 2000, 76, 2271–2273. [Google Scholar] [CrossRef]
- Smith, L.L.; Davis, R.F.; Kim, M.J.; Carpenter, R.W.; Huang, Y. Microstructure, electrical properties, and thermal stability of Au-based ohmic contacts to p-GaN. J. Mater. Res. 1997, 12, 2249–2254. [Google Scholar] [CrossRef]
- Dressler, C.; Abadias, G.; Bayle-Guillemaud, P.; Marty, A.; Schuster, I.; Thibault, J.; Gilles, B. Anisotropic modulated structures upon annealing of epitaxial AuNi ultrathin films on Au(001). Appl. Phys. Lett. 1998, 72, 2241–2243. [Google Scholar] [CrossRef]
- Ramaswamy, V.; Phillips, M.A.; Nix, W.D.; Clemens, B.M. Observation of the strengthening of Pt layers in Ni/Pt and Pd/Pt multilayers by in-situ substrate curvature measurement. Mater. Sci. Eng. A 2001, 319–321, 887–892. [Google Scholar] [CrossRef]
- Schrade-Köhn, D.; Leber, P.; Behtash, R.; Blanck, H.; Schumacher, H. Change of the material properties of Ni, Pt and Au thin films and thin film stacks for GaN Schottky contacts during thermal processing. Semicond. Sci. Technol. 2010, 25, 095009. [Google Scholar] [CrossRef]
- Jackson, M.J.; Chen, L.-M.; Kumar, A.; Yang, Y.; Goorsky, M.S. Low-Temperature III–V Direct Wafer Bonding Surface Preparation Using a UV-Sulfur Process. J. Electron. Mater. 2011, 40, 1–5. [Google Scholar] [CrossRef]
Etching Composition | Surface Roughness, Ra [nm] |
Specific Contact Resistance, ρc [×10−4 Ω·cm2] |
---|---|---|
(NH4)2S-t-(CH3)3COH | 9.0 | 0.7 |
(NH4)2S-(CH3)2CHOH | 4.0 | 0.1 |
(NH4)2S | 12.0 | 0.4 |
Standard cleaning | 16.0 | 3.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Levchenko, I.; Kryvyi, S.; Kamińska, E.; Smalc-Koziorowska, J.; Grzanka, S.; Kacperski, J.; Nowak, G.; Kret, S.; Marona, Ł.; Perlin, P. Pros and Cons of (NH4)2S Solution Treatment of p-GaN/Metallization Interface: Perspectives for Laser Diode. Materials 2024, 17, 4520. https://doi.org/10.3390/ma17184520
Levchenko I, Kryvyi S, Kamińska E, Smalc-Koziorowska J, Grzanka S, Kacperski J, Nowak G, Kret S, Marona Ł, Perlin P. Pros and Cons of (NH4)2S Solution Treatment of p-GaN/Metallization Interface: Perspectives for Laser Diode. Materials. 2024; 17(18):4520. https://doi.org/10.3390/ma17184520
Chicago/Turabian StyleLevchenko, Iryna, Serhii Kryvyi, Eliana Kamińska, Julita Smalc-Koziorowska, Szymon Grzanka, Jacek Kacperski, Grzegorz Nowak, Sławomir Kret, Łucja Marona, and Piotr Perlin. 2024. "Pros and Cons of (NH4)2S Solution Treatment of p-GaN/Metallization Interface: Perspectives for Laser Diode" Materials 17, no. 18: 4520. https://doi.org/10.3390/ma17184520