Minimizing Area-Specific Resistance of Electrochemical Hydrogen Compressor under Various Operating Conditions Using Unsteady 3D Single-Channel Model
Abstract
:1. Introduction
2. Three-Dimensional Single-Channel Modeling
3. Mathematical Model
3.1. Governing Equations
3.2. Boundary Conditions and Numerical Method
4. Results and Discussion
4.1. Validation of Model
4.2. Operating Temperature Effects
4.3. Relative Humidity Effects
4.4. GDL Porosity Effects
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
List of Symbols
Activity of water/- | |
Fiber diameter/ | |
Water diffusivity/ | |
Effective diffusivity for species i/ | |
F | Faraday constant/ |
h | Fluid enthalpy/ |
Current density/ | |
Intrinsic permeability of the GDL/ | |
Number of electrons in hydrogen/- | |
Hydrogen crossover flux/mol | |
Anode pressure/ | |
Cathode pressure/ | |
Porous viscous resistance of the GDL/ | |
Actual water vapor pressure/ | |
Saturation water vapor pressure/ | |
Ideal gas constant/ | |
Thickness of membrane/mm | |
Temperature/K | |
Velocity vector/ | |
Mass fraction for species i/- | |
Greek letters | |
Transfer coefficient/- | |
Effective transfer coefficient of anode | |
Effective transfer coefficient of cathode | |
Porosity/- | |
Overpotential/ | |
Water content/- | |
Viscosity coefficient/ | |
Density/ | |
Ionic conductivity/ | |
Membrane potential/V |
References
- Kim, C.; Gong, M.; Lee, J.; Na, Y. Minimizing Specific Energy Consumption of Electrochemical Hydrogen Compressor at Various Operating Conditions Using Pseudo-2D Model Simulation. Membranes 2022, 12, 1214. [Google Scholar] [CrossRef] [PubMed]
- Agyekum, E.B.; Nutakor, C.; Agwa, A.M.; Kamel, S. A Critical Review of Renewable Hydrogen Production Methods: Factors Affecting Their Scale-Up and Its Role in Future Energy Generation. Membranes 2022, 12, 173. [Google Scholar] [CrossRef] [PubMed]
- Calvo, G.; Valero, A. Strategic Mineral Resources: Availability and Future Estimations for the Renewable Energy Sector. Environ. Dev. 2022, 41, 100640. [Google Scholar] [CrossRef]
- Unny, A. The U.S Inaction on Climate Change: Realism and Its Interpretations. J. Int. Stud. 2020, 16, 89–103. [Google Scholar] [CrossRef]
- Vermaak, L.; Neomagus, H.W.J.P.; Bessarabov, D.G. Electrochemical Membrane Technology in the Temperature Range 100–16 °C. Membranes 2021, 11, 282. [Google Scholar] [CrossRef]
- Balat, M. Potential Importance of Hydrogen as a Future Solution to Environmental and Transportation Problems. Int. J. Hydrogen Energy 2008, 33, 4013–4029. [Google Scholar] [CrossRef]
- El-Shafie, M.; Kambara, S.; Hayakawa, Y. Hydrogen Production Technologies Overview. J. Power Energy Eng. 2019, 7, 107–154. [Google Scholar] [CrossRef]
- Rusman, N.A.A.; Dahari, M. A Review on the Current Progress of Metal Hydrides Material for Solid-State Hydrogen Storage Applications. Int. J. Hydrogen Energy 2016, 41, 12108–12126. [Google Scholar] [CrossRef]
- Chapman, A.; Itaoka, K.; Hirose, K.; Davidson, F.T.; Nagasawa, K.; Lloyd, A.C.; Webber, M.E.; Kurban, Z.; Managi, S.; Tamaki, T.; et al. A Review of Four Case Studies Assessing the Potential for Hydrogen Penetration of the Future Energy System. Int. J. Hydrogen Energy 2019, 44, 6371–6382. [Google Scholar] [CrossRef]
- Holladay, J.D.; Wang, Y.; Jones, E. Review of Developments in Portable Hydrogen Production Using Microreactor Technology. Chem. Rev. 2004, 104, 4767–4789. [Google Scholar] [CrossRef]
- Abdulla, A.; Laney, K.; Padilla, M.; Sundaresan, S.; Benziger, J. Efficiency of Hydrogen Recovery from Reformate with a Polymer Electrolyte Hydrogen Pump. AIChE J. 2011, 57, 1767–1779. [Google Scholar] [CrossRef]
- Vermaak, L.; Neomagus, H.W.J.P.; Bessarabov, D.G. Recent Advances in Membrane-Based Electrochemical Hydrogen Separation: A Review. Membranes 2021, 11, 127. [Google Scholar] [CrossRef] [PubMed]
- Durmus, G.N.B.; Colpan, C.O.; Devrim, Y. A Review on the Development of the Electrochemical Hydrogen Compressors. J. Power Sources 2021, 494, 229743. [Google Scholar] [CrossRef]
- Sheffield, J.W.; Martin, K.B.; Folkson, R. Electricity and Hydrogen as Energy Vectors for Transportation Vehicles. In Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance; Woodhead Publishing: Cambridge, UK, 2014; pp. 117–137. [Google Scholar]
- Abe, J.O.; Popoola, A.P.I.; Ajenifuja, E.; Popoola, O.M. Hydrogen Energy, Economy and Storage: Review and Recommendation. Int. J. Hydrogen Energy 2019, 44, 15072–15086. [Google Scholar] [CrossRef]
- Sdanghi, G.; Maranzana, G.; Celzard, A.; Fierro, V. Towards Non-Mechanical Hybrid Hydrogen Compression for Decentralized Hydrogen Facilities. Energies 2020, 13, 3145. [Google Scholar] [CrossRef]
- Nordio, M.; Rizzi, F.; Manzolini, G.; Mulder, M.; Raymakers, L.; van Sint Annaland, M.; Gallucci, F. Experimental and Modelling Study of an Electrochemical Hydrogen Compressor. Chem. Eng. J. 2019, 369, 432–442. [Google Scholar] [CrossRef]
- Ströbel, R.; Oszcipok, M.; Fasil, M.; Rohland, B.; Jörissen, L.; Garche, J. The compression of hydrogen in an electrochemical cell based on a PE fuel cell design. J. Power Sources 2002, 105, 208–215. [Google Scholar] [CrossRef]
- Barbir, F.; Görgün, H. Electrochemical hydrogen pump for recirculation of hydrogen in a fuel cell stack. J. Appl. Electrochem. 2007, 37, 359–365. [Google Scholar] [CrossRef]
- Suermann, M.; Kiupel, T.; Schmidt, T.J.; Büchi, F.N. Electrochemical Hydrogen Compression: Efficient Pressurization Concept Derived from an Energetic Evaluation. J. Electrochem. Soc. 2017, 164, 1187–1195. [Google Scholar] [CrossRef]
- Grigoriev, S.A.; Shtatniy, I.G.; Millet, P.; Porembsky, V.I.; Fateev, V.N. Description and characterization of an electrochemical hydrogen compressor/concentrator based on solid polymer electrolyte technology. Int. J. Hydrogen Energy 2011, 36, 4148–4155. [Google Scholar] [CrossRef]
- Zou, J.; Han, N.; Yan, J.; Feng, Q.; Wang, Y.; Zhao, Z.; Fan, J.; Zeng, L.; Li, H.; Wang, H. Electrochemical Compression Technologies for High-Pressure Hydrogen: Current Status, Challenges and Perspective. Electrochem. Energy Rev. 2020, 3, 690–729. [Google Scholar] [CrossRef]
- Yang, B.; Manohar, A.; Prakash, G.K.S.; Chen, W.; Narayanan, S.R. Anhydrous Proton-Conducting Membrane Based on Poly-2-Vinylpyridinium Dihydrogenphosphate for Electrochemical Applications. J. Phys. Chem. 2011, 115, 14462–14468. [Google Scholar] [CrossRef]
- Sdanghi, G.; Dillet, J.; Didierjean, S.; Fierro, V.; Maranzana, G. Feasibility of Hydrogen Compression in an Electrochemical System: Focus on Water Transport Mechanisms. Fuel Cells 2020, 20, 370–380. [Google Scholar] [CrossRef]
- Pineda-Delgado, J.L.; Chávez-Ramirez, A.U.; Gutierrez, B.C.K.; Rivas, S.; Marisela, C.R.; de Jesús Hernández-Cortes, R.; Menchaca-Rivera, J.A.; Pérez-Robles, J.F. Effect of relative humidity and temperature on the performance of an electrochemical hydrogen compressor. Appl. Energy 2022, 311, 118617. [Google Scholar] [CrossRef]
- Rico-Zavala, A.; Matera, F.V.; Arjona, N.; Rodríguez-Morales, J.A.; Ledesma-García, J.; Gurrola, M.P.; Arriaga, L.G. Nanocomposite membrane based on SPEEK as a perspectives application in electrochemical hydrogen compressor. Int. J. Hydrogen Energy 2019, 44, 4839–4850. [Google Scholar] [CrossRef]
- Mittelsteadt, C.K.; Laicer, C.S.; Harrison, L.K.; McPheeters, B.M. Electrochemical Device Comprising an Electrically-Conductive, Selectively-Permeable Membrane. US Patent 9,595,727, 14 March 2011. [Google Scholar]
- Hao, Y.M.; Nakajima, H.; Yoshizumi, H.; Inada, A.; Sasaki, K.; Ito, K. Characterization of an electrochemical hydrogen pump with internal humidifier and dead-end anode channel. Int. J. Hydrogen Energy 2016, 41, 13879–13887. [Google Scholar] [CrossRef]
- Onda, K.; Ichihara, K.; Nagahama, M.; Minamoto, Y.; Araki, T. Separation and compression characteristics of hydrogen by use of proton exchange membrane. J. Power Sources 2007, 164, 1–8. [Google Scholar] [CrossRef]
- Rohland, B.; Eberle, K.; Ströbel, R.; Scholta, J.; Garche, J. Electrochemical hydrogen compressor. Electrochim. Acta 1998, 43, 3841–3846. [Google Scholar] [CrossRef]
- Toghyani, S.; Baniasadi, E.; Afshari, E.; Javani, N. Performance analysis and exergoeconomic assessment of a proton exchange membrane compressor for electrochemical hydrogen storage. Int. J. Hydrogen Energy 2020, 45, 34993–35005. [Google Scholar] [CrossRef]
- O’Hayre, R.; Colella, W.; Cha, S.-W.; Prinz, F.B. Fuel Cell Fundamentals, 2nd ed.; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Siemens Digital Industries Software, version 2021; 3Simcenter STAR-CCM+; Siemens: Munich, Germany, 2021.
- Wu, H.; Li, X.; Berg, P. On the modeling of water transport in polymer electrolyte membrane fuel cells. Electrochim. Acta 2009, 54, 6913–6927. [Google Scholar] [CrossRef]
- Baik, K.D.; Hong, B.K.; Kim, M.S. Effects of operating parameters on hydrogen crossover rate through Nafion® membranes in polymer electrolyte membrane fuel cells. Renew. Energy 2013, 57, 234–239. [Google Scholar] [CrossRef]
- CFL Number. Available online: https://www.banditong.com/cae-dict/courant_friedrichs_lewy_number-_cfl_number (accessed on 9 March 2023).
- Poinsot, T.; Candel, S.M. The Influence of Differencing and CFL Number on Implicit Time-Dependent Non-linear Calculations. J. Comput. Phys. 1986, 62, 282–296. [Google Scholar] [CrossRef]
- Sun, C.Y.; Zhang, H. Investigation of Nafion series membranes on the performance of iron-chromium redox flow battery. Int. J. Energy Res. 2019, 43, 8739–8752. [Google Scholar] [CrossRef]
- Chouhan, A.; Bahar, B.; Prasad, A.K. Effect of back-diffusion on the performance of an electrochemical hydrogen compressor. Int. J. Hydrogen Energy 2020, 45, 10991–10999. [Google Scholar] [CrossRef]
- Onishi, L.M.; Prausnitz, J.M.; Newman, J. Water-Naion Equilibria. Absence of Schoeder’s Paradox. J. Phys. Chem. 2007, 111, 10166–10173. [Google Scholar] [CrossRef]
- Dickinson, E.J.F.; Smith, G. Modelling the Proton-Conductive Membrane in Practical Polymer Electrolyte Membrane Fuel Cell (PEMFC) Simulation: A Review. Membranes 2020, 10, 310. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.S.; Shareef, H.; Bouhaddioui, C.; Errouissi, R. Membrane-hydration-state detection in proton exchange membrane fuel cells using improved ambient-condition-based dynamic model. Int. J. Energy Res. 2020, 44, 869–889. [Google Scholar] [CrossRef]
- Niblett, D.; Niasar, V.; Holmes, S. Enhancing the Performance of Fuel Cell Gas Diffusion Layers Using Ordered Microstructural Design. J. Electrochem. Soc. 2020, 167, 013520. [Google Scholar] [CrossRef]
- Zhou, P.; Wu, C.W.; Ma, G.J. Contact resistance prediction and structure optimization of bipolar plates. J. Power Sources 2006, 159, 1115–1122. [Google Scholar] [CrossRef]
- van der Merwe, J.; Uren, K.; van Schoor, G.; Bessarabov, D. Characterisation tools development for PEM electrolysers. Int. J. Hydrogen Energy 2014, 39, 14212–14221. [Google Scholar] [CrossRef]
- Pang, Y.; Want, Y. Water spatial distribution in polymer electrolyte membrane fuel cell: Convolutional neural network analysis of neutron radiography. Energy AI 2023, 14, 100265. [Google Scholar] [CrossRef]
Parameter | Units | Value |
---|---|---|
Bipolar Plate Width Depth Height | mm | 1.5 6.0 1.5 |
Channel Width Depth Height | mm | 1.0 7.0 1.0 |
Thickness of GDL () | mm | 0.2 |
Thickness of Catalyst Layer () | mm | 0.01 |
Thickness of Membrane () | mm | 0.125 |
Parameter | Units | Value |
---|---|---|
Faraday Constant (F) | C/mol | 96,485.332 |
Gas Constant (R) | J/mol∙K | 8.3144 |
Exchange Current Density | 1 [31] | |
Thermal Conductivity of Bipolar Plate | W/m∙K | 95 [31] |
Electrical Conductivity of Bipolar Plate | S/cm | 1250 [33] |
Thermal Conductivity of Gas Diffusion Layer | W/m∙K | 24 [33] |
Gas Diffusion Layer Porosity (ε) | - | 0.2/0.4/0.6/0.8 |
Thermal Conductivity of Catalyst Layer | W/m∙K | 2.37 [33] |
Electrical Conductivity of Catalyst Layer | S/cm | 1 [33] |
Dry Density of Membrane | 2000 [33] | |
Equivalent Weight of Membrane ( | kg/kmol | 1100 [33] |
Operating Temperature (T) | K | 303.15/313.15/333.15/353.15 |
Relative Humidity (RH) | % | 25/50/75/100 |
Inlet Velocity | m/s | 1 |
Operating Current | A | 0.0315 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, M.; Jin, C.; Na, Y. Minimizing Area-Specific Resistance of Electrochemical Hydrogen Compressor under Various Operating Conditions Using Unsteady 3D Single-Channel Model. Membranes 2023, 13, 555. https://doi.org/10.3390/membranes13060555
Gong M, Jin C, Na Y. Minimizing Area-Specific Resistance of Electrochemical Hydrogen Compressor under Various Operating Conditions Using Unsteady 3D Single-Channel Model. Membranes. 2023; 13(6):555. https://doi.org/10.3390/membranes13060555
Chicago/Turabian StyleGong, Myungkeun, Changhyun Jin, and Youngseung Na. 2023. "Minimizing Area-Specific Resistance of Electrochemical Hydrogen Compressor under Various Operating Conditions Using Unsteady 3D Single-Channel Model" Membranes 13, no. 6: 555. https://doi.org/10.3390/membranes13060555
APA StyleGong, M., Jin, C., & Na, Y. (2023). Minimizing Area-Specific Resistance of Electrochemical Hydrogen Compressor under Various Operating Conditions Using Unsteady 3D Single-Channel Model. Membranes, 13(6), 555. https://doi.org/10.3390/membranes13060555