High-Density and Monodisperse Electrochemical Gold Nanoparticle Synthesis Utilizing the Properties of Boron-Doped Diamond Electrodes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents and Equipment
2.2. Fabrication of the BDD Electrode
2.3. AuNP Coating on BDD
2.4. Electrochemical Detection of As(Ⅲ)
3. Results and Discussion
3.1. Optimization of AuNP Deposition and Characterization
3.2. Electrochemical Property and Optimization of the AuNP-BDD
3.3. Electrochemical Detection of As(Ⅲ) Using AuNP-BDD
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matschullat, J. Arsenic in the geosphere—A review. Sci. Total Environ. 2000, 249, 297–312. [Google Scholar] [CrossRef]
- Huq, E.; Fahad, S.; Shao, Z.; Sarven, M.S.; Khan, I.A.; Alam, M.; Saeed, M.; Ullah, H.; Adnan, M.; Saud, S.; et al. Arsenic in a groundwater environment in Bangladesh: Occurrence and mobilization. J. Environ. Manag. 2020, 262, 110318. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Caminero, A.; Howe, P.; Hughes, E.; Kenyon, E.; Lewis, D.R.; Moore, M.; Ng, J.; Aitio, A.; Becking, G. .Environmental Health Criteria 224; World Health Organisation: Geneva, Switzerland, 2001. [Google Scholar]
- Celik, I.; Gallicchio, L.; Boyd, K.; Lam, T.K.; Matanoski, G.; Tao, X.; Shiels, M.; Hammond, E.; Chen, L.; Robinson, K.A.; et al. Arsenic in drinking water and lung cancer: A systematic review. Environ. Res. 2008, 108, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Pontius, F.W.; Brown, K.G.; Chen, C.-J. Health implications of arsenic in drinking water. J. Am. Water Work. Assoc. 1994, 86, 52–63. [Google Scholar] [CrossRef]
- Parvez, F.; Chen, Y.; Brandt-Rauf, P.W.; Slavkovich, V.; Islam, T.; Ahmed, A.; Argos, M.; Hassan, R.; Yunus, M.; Haque, S.E.; et al. A prospective study of respiratory symptoms associated with chronic arsenic exposure in Bangladesh: Findings from the Health Effects of Arsenic Longitudinal Study (HEALS). Thorax 2010, 65, 528–533. [Google Scholar] [CrossRef] [Green Version]
- van Geen, A.; Cheng, Z.; Seddique, A.; Hoque, M.; Gelman, A.; Graziano, J.; Ahsan, H.; Parvez, F.; Ahmed, K. Reliability of a commercial kit to test groundwater for arsenic in Bangladesh. Environ. Sci. Technol. 2005, 39, 299–303. [Google Scholar] [CrossRef] [PubMed]
- Maher, W.A.; Ellwood, M.J.; Krikowa, F.; Raber, G.; Foster, S. Measurement of arsenic species in environmental, biological fluids and food samples by HPLC-ICPMS and HPLC-HG-AFS. J. Anal. At. Spectrom. 2015, 30, 2129–2183. [Google Scholar] [CrossRef]
- Paula, J.F.; Froes, R.; Ciminelli, V.S. Arsenic determination in complex mining residues by ICP OES after ultrasonic extraction. Microchem. J. 2012, 104, 12–16. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Sengupta, M.K.; Yuan, D.; Dasgupta, P.K. Speciation and detection of arsenic in aqueous samples: A review of recent progress in non-atomic spectrometric methods. Anal. Chim. Acta 2014, 831, 1–23. [Google Scholar] [CrossRef]
- Bansod, B.K.; Kumar, T.; Thakur, R.; Rana, S.; Singh, I. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosens. Bioelectron. 2017, 94, 443–455. [Google Scholar] [CrossRef]
- Mays, D.E.; Hussam, A. Voltammetric methods for determination and speciation of inorganic arsenic in the environment—A review. Anal. Chim. Acta 2009, 646, 6–16. [Google Scholar] [CrossRef] [PubMed]
- Cirocka, A.; Zarzeczańska, D.; Wcisło, A. Good Choice of Electrode Material as the Key to Creating Elec-trochemical Sensors—Characteristics of Carbon Materials and Transparent Conductive Oxides (TCO). Materials 2021, 14, 4743. [Google Scholar] [CrossRef] [PubMed]
- Thamilselvan, A.; Nesaraj, A.; Noel, M. Review on carbon-based electrode materials for application in ca-pacitive deionization process. Int. J. Environ. Sci. Technol. (Tehran) 2016, 13, 2961–2976. [Google Scholar] [CrossRef]
- Toghill, K.E.; Xiao, L.; Wildgoose, G.G.; Compton, R.G. Electroanalytical Determination of Cadmium(II) and Lead(II) Using an Antimony Nanoparticle Modified Boron-Doped Diamond Electrode. Electroanalysis 2009, 21, 1113–1118. [Google Scholar] [CrossRef]
- Sýkora, D.; Kašička, V.; Mikšík, I.; Řezanka, P.; Záruba, K.; Matějka, P.; Král, V. Application of gold nanoparti-cles in separation sciences. J. Sep. Sci. 2010, 33, 372–387. [Google Scholar] [CrossRef]
- Daraee, H.; Eatemadi, A.; Abbasi, E.; Aval, S.F.; Kouhi, M.; Akbarzadeh, A. Application of gold nanoparti-cles in biomedical and drug delivery. Artif. Cells. Nanomed. Biotechnol. 2016, 44, 410–422. [Google Scholar] [CrossRef]
- Guo, S.; Wang, E. Synthesis and electrochemical applications of gold nanoparticles. Anal. Chim. Acta 2007, 598, 181–192. [Google Scholar] [CrossRef]
- Rechberger, W.; Hohenau, A.; Leitner, A.; Krenn, J.; Lamprecht, B.; Aussenegg, F. Optical properties of two in-teracting gold nanoparticles. Opt. Commun. 2003, 220, 137–141. [Google Scholar] [CrossRef]
- Njoki, P.N.; Lim, I.I.; Mott, D.; Park, H.Y.; Khan, B.; Mishra, S.; Sujakumar, R.; Luo, J.; Zhong, C.J. Size correla-tion of optical and spectroscopic properties for gold nanoparticles. J. Phys. Chem. C 2007, 111, 14664–14669. [Google Scholar] [CrossRef]
- Takemura, K.; Ganganboina, A.B.; Khoris, I.M.; Chowdhury, A.D.; Park, E.Y. Plasmon Nanocomposite-Enhanced Optical and Electrochemical Signals for Sensitive Virus Detection. ACS Sens. 2021, 6, 2605–2612. [Google Scholar] [CrossRef]
- Lin, Y.; Peng, Y.; Di, J. Electrochemical detection of Hg(II) ions based on nanoporous gold nanoparticles modified indium tin oxide electrode. Sens. Actuators B Chem. 2015, 220, 1086–1090. [Google Scholar] [CrossRef]
- Wan, H.; Sun, Q.; Li, H.; Sun, F.; Hu, N.; Wang, P. Screen-printed gold electrode with gold nanoparticles modi-fication for simultaneous electrochemical determination of lead and copper. Sens. Actuators B Chem. 2015, 209, 336–342. [Google Scholar] [CrossRef]
- Jayadevimanoranjitham, J.; Narayanan, S.S. 2,4,6-Trimercaptotriazine incorporated gold nanoparticle modified electrode for anodic stripping voltammetric determination of Hg(II). Appl. Surf. Sci. 2018, 448, 444–454. [Google Scholar] [CrossRef]
- Yu, A.; Liang, Z.; Cho, J.; Caruso, F. Nanostructured electrochemical sensor based on dense gold nanoparti-cle films. Nano lett. 2003, 3, 1203–1207. [Google Scholar] [CrossRef]
- Kannan, P.; John, S.A. Determination of nanomolar uric and ascorbic acids using enlarged gold nanopar-ticles modified electrode. Anal. Biochem. 2009, 386, 65–72. [Google Scholar] [CrossRef]
- Liu, G.; Luais, E.; Gooding, J.J. The fabrication of stable gold nanoparticle-modified interfaces for electro-chemistry. Langmuir 2011, 27, 4176–4183. [Google Scholar] [CrossRef]
- Eldeab, M.; Ohsaka, T. An extraordinary electrocatalytic reduction of oxygen on gold nanoparticles-electrodeposited gold electrodes. Electrochem. Commun. 2002, 4, 288–292. [Google Scholar] [CrossRef]
- Hezard, T.; Fajerwerg, K.; Evrard, D.; Collière, V.; Behra, P.; Gros, P. Influence of the gold nanoparticles elec-trodeposition method on Hg (II) trace electrochemical detection. Electrochim. Acta 2012, 73, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Ohmagari, S.; Srimongkon, K.; Yamada, H.; Umezawa, H.; Tsubouchi, N.; Chayahara, A.; Shikata, S.; Mokuno, Y. Low resistivity p+ diamond (100) films fabricated by hot-filament chemical vapor deposition. Diam. Relat. Mater. 2015, 58, 110–114. [Google Scholar] [CrossRef]
- Umezawa, H.; Takenouchi, T.; Kobayashi, K.; Takano, Y.; Nagao, M.; Tachiki, M.; Hatano, T.; Kawarada, H. Growth of heavily boron-doped polycrystalline superconducting diamond. New Diam. Front. C. Tec. 2007, 17, 1–10. [Google Scholar]
- Borrill, A.J.; Reily, N.E.; Macpherson, J.V. Addressing the practicalities of anodic stripping voltammetry for heavy metal detection: A tutorial review. Analyst 2019, 144, 6834–6849. [Google Scholar] [CrossRef] [PubMed]
- Armbruster, D.A.; Pry, T. Limit of Blank, Limit of Detection and Limit of Quantitation. Clin. Biochem. Rev. 2008, 29, S49–S52. [Google Scholar] [PubMed]
- Pungjunun, K.; Chaiyo, S.; Jantrahong, I.; Nantaphol, S.; Siangproh, W.; Chailapakul, O. Anodic stripping voltammetric determination of total arsenic using a gold nanoparticle-modified boron-doped diamond elec-trode on a paper-based device. Microchim. Acta 2018, 185, 324. [Google Scholar] [CrossRef] [PubMed]
- Yamada, D.; Ivandini, T.A.; Komatsu, M.; Fujishima, A.; Einaga, Y. Anodic stripping voltammetry of inorgan-ic species of As3+ and As5+ at gold-modified boron doped diamond electrodes. J. Electroanal. Chem. 2008, 615, 145–153. [Google Scholar] [CrossRef]
- Song, Y.; Swain, G.M. Development of a method for total inorganic arsenic analysis using anodic strip-ping voltammetry and a Au-coated, diamond thin-film electrode. Anal. Chem. 2007, 79, 2412–2420. [Google Scholar] [CrossRef] [PubMed]
- Majid, E.; Hrapovic, S.; Liu, Y.; Male, A.K.B.; Luong, J.H.T. Electrochemical Determination of Arsenite Using a Gold Nanoparticle Modified Glassy Carbon Electrode and Flow Analysis. Anal. Chem. 2005, 78, 762–769. [Google Scholar] [CrossRef] [PubMed]
- Ismail, S.; Yusof, N.A.; Abdullah, J.; Rahman, S.F.A. Development of electrochemical sensor based on Sili-ca/Gold nanoparticles modified electrode for detection of arsenite. IEEE Sens. J. 2019, 20, 3406–3414. [Google Scholar] [CrossRef]
- Salunke, R.S.; Nakate, Y.T.; Umar, A.; Nakate, U.T.; Ahmad, R.; Shirale, D.J. Anodic stripping voltammetry analysis of gold nanoparticles functionalized one-dimensional single polypyrrole nanowire for arsenic sensing. Surfaces Interfaces 2021, 23, 100895. [Google Scholar] [CrossRef]
Synthesis Method of AuNP | Average AuNP Size (nm) | AuNP Number/μm² | LoD (ppb) | Linier Range (ppb) | Ref No. | |
---|---|---|---|---|---|---|
AuNP-BDD | Electrochemical reduction (Potential: −0.3 V) | 70–90 | - | 20 | - | [34] |
AuNP-BDD | Electrochemical reduction (Potential: −0.4 V) | 220 ± 20 | - | 5 | - | [35] |
AuNP-BDD (As co deposition) | Electrochemical reduction (Potential: −0.15 V) | 23 ± 5 | 64 | 0.005 | 0.01–40 | [36] |
AuNP-GCE | Electrochemical reduction (Potential: 0.18 V) | 30 ± 10 | - | 0.25 | 0.5–25 | [37] |
Screen printed carbon electrode/SilicaNP/AuNP | Chemical reduction | - | - | 5.6 | 10–100 | [38] |
AuNP-Polypyrrole Nanowire | Electrochemical reduction (cyclic voltammetry) | 111 | - | 0.37 | - | [39] |
This Work | Electrochemical reduction (Potential: −1.8 V) | 56 ± 5 | 132 ± 7 | 0.473 | 2–150 | - |
Spectrum | C | N | O | Si | As | Au |
---|---|---|---|---|---|---|
AuNP 1 | 70.25 | 2.96 | 2.09 | 1.79 | 0.08 | 22.58 |
AuNP 2 | 75.50 | 0.00 | 0.67 | 1.82 | 0.04 | 21.97 |
AuNP 3 | 83.92 | 0.32 | 0.79 | 1.03 | 0.03 | 13.91 |
AuNP 4 | 96.36 | 0.97 | 2.11 | 0.22 | 0.01 | 0.34 |
AuNP 5 | 96.46 | 1.09 | 2.26 | 0.17 | 0.00 | 0.02 |
AuNP 6 | 95.57 | 1.04 | 2.83 | 0.54 | 0.00 | 0.01 |
BDD 1 | 96.93 | 0.53 | 2.17 | 0.36 | 0.00 | 0.02 |
BDD 2 | 96.24 | 1.15 | 2.45 | 0.15 | 0.00 | 0.01 |
BDD 3 | 96.94 | 0.80 | 2.13 | 0.13 | 0.00 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takemura, K.; Iwasaki, W.; Morita, N.; Ohmagari, S. High-Density and Monodisperse Electrochemical Gold Nanoparticle Synthesis Utilizing the Properties of Boron-Doped Diamond Electrodes. Nanomaterials 2022, 12, 1741. https://doi.org/10.3390/nano12101741
Takemura K, Iwasaki W, Morita N, Ohmagari S. High-Density and Monodisperse Electrochemical Gold Nanoparticle Synthesis Utilizing the Properties of Boron-Doped Diamond Electrodes. Nanomaterials. 2022; 12(10):1741. https://doi.org/10.3390/nano12101741
Chicago/Turabian StyleTakemura, Kenshin, Wataru Iwasaki, Nobutomo Morita, and Shinya Ohmagari. 2022. "High-Density and Monodisperse Electrochemical Gold Nanoparticle Synthesis Utilizing the Properties of Boron-Doped Diamond Electrodes" Nanomaterials 12, no. 10: 1741. https://doi.org/10.3390/nano12101741
APA StyleTakemura, K., Iwasaki, W., Morita, N., & Ohmagari, S. (2022). High-Density and Monodisperse Electrochemical Gold Nanoparticle Synthesis Utilizing the Properties of Boron-Doped Diamond Electrodes. Nanomaterials, 12(10), 1741. https://doi.org/10.3390/nano12101741