Fabrication and Characterization of Nanoenergetic Hollow Spherical Hexanitrostibene (HNS) Derivatives
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Sample Preparation
2.3. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, C.; Yang, C.; Hu, B.; Yu, C.; Zheng, Z.; Sun, C. A Symmetric Co(N5)2(H2O)4·4H2O High-Nitrogen Compound Formed by Cobalt(II) Cation Trapping of a Cyclo-N5− Anion. Angew. Chem. Int. Ed. 2017, 56, 4583–4585. [Google Scholar] [CrossRef]
- Zhang, J.; Mitchell, L.A.; Parrish, D.A.; Shreeve, J.M. Enforced layer-by-layer stacking of energetic salts towards high-performance insensitive energetic materials. J. Am. Chem. Soc. 2015, 137, 10532–10535. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhang, J.; Deng, M.; Qi, X.; Nie, F.; Zhang, Q. A promising high-energy-density material. Nat. Commun. 2017, 8, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Bolton, O.; Matzger, A.J. Improved stability and smart-material functionality realized in an energetic cocrystal. Angew. Chem. Int. Ed. 2011, 50, 8960–8963. [Google Scholar] [CrossRef] [PubMed]
- Deng, P.; Liu, Y.; Luo, P.; Wang, J.; Wang, D.; He, Y. Two-steps synthesis of sandwich-like graphene oxide/LLM-105 nanoenergetic composites using functionalized graphene. Mater. Lett. 2017, 194, 156–159. [Google Scholar] [CrossRef]
- Xu, J.; Li, D.; Chen, Y.; Tan, L.; Kou, B.; Wan, F.; Jiang, W.; Li, F. Constructing sheet-on-sheet structured graphitic carbon nitride/reduced graphene oxide/layered MnO2 ternary nanocomposite with outstanding catalytic properties on thermal decomposition of ammonium Perchlorate. Nanomaterials 2017, 7, 450–462. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Gozin, M.; Zhao, F.; Cohen, A.; Pang, S. Highly energetic compositions based on functionalized carbon nanomaterials. Nanoscale 2016, 8, 4799–4851. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; He, Y.; Peng, R. Graphitic carbon nitride (g-C3N4) as a metal-free catalyst for thermal decomposition of ammonium perchlorate. RSC Adv. 2015, 5, 24507–24512. [Google Scholar] [CrossRef]
- Fischer, N.; Fischer, D.; Klapötke, T.M.; Piercey, D.G.; Stierstorfer, J. Pushing the limits of energetic materials-the synthesis and characterization of dihydroxylammonium 5,50-bistetrazole-1,10-diolate. J. Mater. Chem. 2012, 22, 20418–20422. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, K.; Zhao, F.; Ji, Y.; Yi, J.; Xu, S.; Gao, F.; Chen, B. Synthesis, crystal structure, and thermal behaviors of 3-nitro-1,5-bis (4,4′-dimethylazide)-1,2,3-triazolyl-3-azapentane (NDTAP). Propellants Explos. Pyrotech. 2013, 38, 644–650. [Google Scholar] [CrossRef]
- Huang, B.; Hao, X.; Zhang, H.; Yang, Z.; Ma, Z.; Li, H.; Nie, F.; Huang, H. Ultrasonic approach to the synthesis of HMX@TATB core-shell microparticles with improved mechanical sensitivity. Ultrason. Sonochem. 2014, 21, 1349–1357. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Ren, H.; Guo, X.; Jiang, X.; Jiao, Q. A novel e-HNIW-based insensitive high explosive incorporated with reduced graphene oxide. J. Therm. Anal. Calorim. 2014, 117, 1187–1199. [Google Scholar] [CrossRef]
- Yan, Q.; Cohen, A.; Petrutik, N.; Shlomovich, A.; Burstein, L.; Pang, S.; Gozin, M. Highly insensitive and thermostable energetic coordination nanomaterials based on functionalized graphene oxides. J. Mater. Chem. A 2016, 4, 9941–9948. [Google Scholar] [CrossRef]
- Nguyen, Q.; Huang, C.; Schoenitz, M.; Sullivan, K.T.; Dreizina, E.L. Nanocomposite thermite powders with improved flowability prepared by mechanical milling. Powder Technol. 2018, 327, 368–380. [Google Scholar] [CrossRef]
- Huang, B.; Cao, M.; Nie, F.; Huang, H.; Hu, C. Construction and properties of structure- and size-controlled micro/nano-energetic materials. Defence Technol. 2013, 9, 59–79. [Google Scholar] [CrossRef]
- Yang, G.; Nie, F.; Huang, H.; Zhao, L.; Pang, W. Preparation and characterization of nano-TATB explosive. Propellants Explos. Pyrotech. 2016, 31, 390–394. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, X.; Wang, Y.; Zhu, L.; Yang, L.; Li, G.; Sha, Z. Preparation and structural analysis of nano-silver loaded poly (styrene-co-acrylic acid) core-shell nanospheres with defined shape and composition. Nanomaterials 2017, 7, 234–247. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Fan, Q.; Sha, X.; Zhong, P.; Zhang, J.; Yin, Y.; Gao, C. Self-assembly of noble metal nanoparticles into sub-100 nm colloidosomes with collective optical and catalytic properties. Chem. Sci. 2017, 8, 6103–6110. [Google Scholar]
- Melton, C.N.; Riahinasab, S.T.; Keshavarz, A.; Stokes, B.J.; Hirst, L.S. Phase transition-driven nanoparticle assembly in liquid crystal droplets. Nanomaterials 2018, 8, 146–156. [Google Scholar] [CrossRef] [PubMed]
- Yue, Q.; Li, J.; Zhang, Y.; Cheng, X.; Chen, X.; Pan, P.; Su, J.; Elzatahry, A.A.; Alghamdi, A.; Deng, Y.; et al. Plasmolysis-inspired nanoengineering of functional yolk-shell microspheres with magnetic core and mesoporous silica shell. J. Am. Chem. Soc. 2017, 139, 15486–15493. [Google Scholar] [CrossRef] [PubMed]
- Daniel, M.; Davies, P.; Lochert, I. FOX-7 for Insensitive Boosters; Weapons Systems Division Defence Science and Technology Organisation: Edinburgh, Australia, 2010. [Google Scholar]
- Heijden, A.E.D.M.; Bouma, R.H.B.; Steen, AC.V.D. Physicochemical parameters of nitramines influencing shock sensitivity. Propellants Explos. Pyrotech. 2004, 29, 304–313. [Google Scholar] [CrossRef]
- Kim, K.-J.; Kim, K.-M. Nucleation kinetics in spherulitic crystallization of explosive compound: 3-nitro-1,2,4-triazol-5-one. Powder Technol. 2001, 119, 109–116. [Google Scholar] [CrossRef]
- Qiu, H.; Stepanov, V.; Di Stasio, A.; Chou, T.; Lee, W. RDX-based nano composite microparticles for significantly reduced shock sensitivity. J. Hazard. Mater. 2011, 185, 489–493. [Google Scholar] [CrossRef] [PubMed]
- Radacsi, N.; Stankiewicz, A.; Creyghton, Y.; van der Heijden, A.E.D.M.; Horst, J.H.T. Electrospray crystallization for high-quality submicronsized crystals. Chem. Eng. Technol. 2011, 34, 624–630. [Google Scholar] [CrossRef]
- Vijayalakshmi, R.; Radhakrishnan, S.; Rajendra, P.; Girish, G.; Arun, S. Particle size management studies on spherical 3-nitro-1,2,4-triazol-5-one. Part. Part. Syst. Charact. 2011, 28, 57–63. [Google Scholar] [CrossRef]
- Bayat, Y.; Zeynali, V. Preparation and characterization of nano-CL-20 explosive. J. Energ. Mater. 2011, 29, 281–291. [Google Scholar] [CrossRef]
- Huang, C.; Liu, J.; Ding, L.; Wang, D.; Yang, Z.; Nie, F. Facile Fabrication of nanoparticles stacked 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) sub-microspheres via electrospray deposition. Propellants Explos. Pyrotech. 2017, 43, 188–193. [Google Scholar] [CrossRef]
- Kim, K.; Kim, H. Agglomeration of NTO on the surface of HMX particles in watere NMP solvent. Cryst. Res. Technol. 2008, 43, 87–92. [Google Scholar] [CrossRef]
- Jaworek, A. Micro- and nanoparticle production by electrospraying. Powder Technol. 2007, 176, 18–35. [Google Scholar] [CrossRef]
- Stepanov, V.; Krasnoperov, L.; Elkina, I.; Zhang, X. Production of nanocrystalline RDX by rapid expansion of supercritical solutions. Propellants Explos. Pyrotech. 2005, 30, 178–183. [Google Scholar] [CrossRef]
- Jung, J.; Kim, K. Effect of supersaturation on the morphology of coated surface in coating by solution crystallization. Ind. Eng. Chem. Res. 2011, 50, 3475–3482. [Google Scholar] [CrossRef]
- Liu, Y.; Li, S.; Xu, J.; Zhang, H.; Guan, Y.; Jiang, H.; Huang, S.; Huang, H.; Wang, Z. Three energetic 2,2′,4,4′,6,6′-hexanitrostilbene cocrystals regularly constructed by h-bonding, π-stacking, and van der waals interactions. Cryst. Growth Des. 2018, 18, 1940–1943. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Y.; Li, S.; Huang, S.; Xu, J.; Zhang, H.; Li, J.; Yang, S. Three-dimensional hierarchical 2,2,4,4,6,6-hexanitrostilbene crystalline clusters prepared by controllable supramolecular assembly and deaggregation process. CrystEngComm 2016, 18, 7940–7944. [Google Scholar] [CrossRef]
- Deng, P.; Xu, J.; Li, S.; Huang, S.; Zhang, H.; Wang, J.; Liu, Y. A facile one-pot synthesis of monodisperse hollow hexanitrostilbene-piperazine compound microspheres. Mater. Lett. 2018, 214, 45–49. [Google Scholar] [CrossRef]
- Sviatenko, L.; Gorb, L.; Hill, F.; Leszczynska, D.; Shukla, M.; Okovytyy, S.; Hovorun, D.; Leszczynski, J. In silico alkaline hydrolysis of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine: Density functional theory investigation. Environ. Sci. Technol. 2016, 50, 10039–10046. [Google Scholar] [CrossRef] [PubMed]
- Ramkumar, R.; Sundaram, M. A biopolymer gel-decorated cobalt molybdate nanowafer: Effective graft polymer cross-linked with an organic acid for better energy storage. New J. Chem. 2016, 40, 2863–2877. [Google Scholar] [CrossRef]
- Ramkumar, R.; Sundaram, M. Electrochemical synthesis of polyaniline crosslinked NiMoO4 nanofibre dendrites for energy storage devices. New J. Chem. 2016, 40, 7456–7464. [Google Scholar] [CrossRef]
- Mayer, Z. Thermal decomposition of polyvinyl chloride) and of its low-molecular-weight model compounds. Polym. Rev. 1974, 10, 263–292. [Google Scholar] [CrossRef]
- Pagacza, J.; Hebdab, E.; Janowskic, B.; Sternikd, D.; Janciab, M.; Pielichowsk, K. Thermal decomposition studies on polyurethane elastomers reinforced with polyhedral silsesquioxanes by evolved gas analysis. Polym. Degrad. Stab. 2018, 149, 129–142. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, W.; Yang, Q.; Song, J.; Hao, G.; Li, F. Study of nano-nitramine explosives: Preparation, sensitivity and application. Defence Technol. 2014, 10, 184–189. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, X.; Deng, P.; Hu, S.; Ren, L.; Li, X.; Xiao, P.; Liu, Y. Fabrication and Characterization of Nanoenergetic Hollow Spherical Hexanitrostibene (HNS) Derivatives. Nanomaterials 2018, 8, 336. https://doi.org/10.3390/nano8050336
Cao X, Deng P, Hu S, Ren L, Li X, Xiao P, Liu Y. Fabrication and Characterization of Nanoenergetic Hollow Spherical Hexanitrostibene (HNS) Derivatives. Nanomaterials. 2018; 8(5):336. https://doi.org/10.3390/nano8050336
Chicago/Turabian StyleCao, Xiong, Peng Deng, Shuangqi Hu, Lijun Ren, Xiaoxia Li, Peng Xiao, and Yu Liu. 2018. "Fabrication and Characterization of Nanoenergetic Hollow Spherical Hexanitrostibene (HNS) Derivatives" Nanomaterials 8, no. 5: 336. https://doi.org/10.3390/nano8050336
APA StyleCao, X., Deng, P., Hu, S., Ren, L., Li, X., Xiao, P., & Liu, Y. (2018). Fabrication and Characterization of Nanoenergetic Hollow Spherical Hexanitrostibene (HNS) Derivatives. Nanomaterials, 8(5), 336. https://doi.org/10.3390/nano8050336