Holistic Review of UAV-Centric Situational Awareness: Applications, Limitations, and Algorithmic Challenges
Abstract
:1. Introduction
1.1. Background and Motivation
1.2. Objectives and Scope of the Review
- How SA can enhance the overall autonomy of UAVs in different real-world missions;
- How SA can contribute to persistent and resilient operations;
- The key barriers and the challenges from both software and hardware parts;
- Algorithmic and strategic insights into UAV-centric SA;
- Various perspectives on the effective use of SA in conjunction with UAVs;
- Insights into ongoing and potential future research directions.
2. Fundamentals of UAV-Centric Situational Awareness
2.1. UAVs for Capturing SA
2.2. SA within UAV Operations
2.2.1. Weather Awareness
2.2.2. Collision Awareness
- The object’s type, size, and characteristics;
- Identification and elimination of the sensor redundancy;
- The objects’ motion pattern and velocity (moving toward/moving idle);
- The objects’ behavior in one step forward;
- The level of danger posed by a particular object;
- The appropriate reaction when facing a specific object.
2.2.3. Self-Awareness (Internal Failure Awareness)
2.2.4. Cooperation Awareness (Cognitive Load Awareness)
3. Classification of UAVs
- Unmanned Helicopters (UH): A typical UH has a top-mounted motor with a large propeller for lift and a tail motor to balance torque. UHs are agile and suitable for complex environments but have high maintenance costs due to their complex structure. They are ideal for surveillance and tracking missions (e.g., traffic monitoring, border surveillance) due to their hovering capability and maneuverability [38,39].
- Fixed-Wing UAVs: These UAVs share a structure similar to commercial airplanes, generating lift through pressure differences on their surfaces. They are energy efficient, suitable for time-critical and large-scale applications, but require large runways and have limited maneuverability at high speeds [40,41].
- Multirotor UAVs: The most commonly used UAV for SA, multirotors generate lift through multiple high-speed rotating motors and propellers. They offer high maneuverability, quick response, VTOL capabilities, and are cost effective. However, they have high battery consumption and poor endurance [42,43].
3.1. Multirotor UAV Classes for SA and Environmental Assessment (EA) Applications
3.2. Limitations and Challenges
3.2.1. Environmental Constraints
3.2.2. Restricted Battery Life
3.2.3. Limited Connectivity and Bandwidth
3.2.4. Limited Memory and Onboard Processing Power
3.2.5. Regulatory and Ethical Considerations
4. Unveiling the Landscape of UAV-Centric SA in Various Applications
4.1. Expanding SA with UAVs via WSN and Distributed Sensors
4.2. Expanding SA with UAVs Using Vision Systems
4.3. Expanding SA with UAVs Using LiDAR
5. Algorithmic and Strategic Insights to UAV-Centric SA
5.1. Data-Driven ML Models
5.1.1. Object Detection, Recognition, and Tracking
5.1.2. Data-Driven ML-Based Path Planning and Navigation
5.1.3. Challenges and Future Directions
5.2. Stochastic, Deterministic, and Metaheuristics Algorithms
5.2.1. Deterministic Methods for Vehicle-Based SA
5.2.2. Non-Deterministic and Stochastic Methods for Vehicle-Based SA
5.2.3. Metaheuristic and Evolution-Based Methods for Vehicle-Based SA
5.3. RL-Based Approaches for UAV-Centric SA
Challenges and Future Prospects
6. Multi-Agent Cooperative SA
- Consensus Algorithms: These algorithms ensure that multiple agents can reach an agreement on certain data points or decisions, despite having individual inputs and possibly conflicting information.
- Distributed Data Fusion: This involves combining data from multiple sources (agents) to produce more consistent, accurate, and useful information than that provided by any individual data source.
- Swarm Intelligence: Inspired by the behavior of natural entities like birds or insects, swarm intelligence focuses on the collective behavior of decentralized, self-organized systems, both natural and artificial.
- Graph Theory-Based Methods: Utilizing graph models to represent the agents and their relationships, allowing for the analysis and optimization of the network structure for better communication and task allocation.
- Game Theory: Employed to model and analyze interactions among multiple decision-makers (agents) where the outcome for each participant depends on the decisions of others, facilitating the understanding and design of protocols for cooperation and competition.
- Multi-Agent Reinforcement Learning (MARL): Agents learn to make decisions through trial and error, receiving rewards or penalties, to achieve a common goal in a cooperative or competitive setting.
Challenges and Future Directions
7. Conclusions
7.1. Summary of Key Findings and Ongoing Challenges
7.2. Potential Applications on the Horizon
7.3. Future Trends and Anticipated Technological Developments
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
UAV | Unmanned Aerial Vehicles | GS | ground station |
UAS | Unmanned Aerial Systems | CCC | Command-and-Control Center |
SA | Situation Awareness | LiDAR | light detection and ranging |
SAR | Search and Rescue | Gm-APD | Geiger mode Avalanche Photo Diode |
ML | Machine Learning | YOLO | You only look once |
CNN | Convolutional Neural Network | SPP | Spatial Pyramid Pooling |
DoF | Degrees of Freedom | BIM | Building Information Model |
UH | Unmanned Helicopters | CMaB | Computation, Memory, and Battery |
RL | Reinforcement Learning | SE | Squeeze-and-Excitation |
DL | deep learning | RSSI | received signal strength indication |
VTOL | vertical take-off and landing | FFNN | Feed-Forward Neural Network |
LiPo | lithium-ion, lithium polymer | PSPNe | Pyramid Scene Parsing Network |
LiHV | Lithium Polymer High Voltage | SIDE | Single Image Depth Estimation |
WSN | Wireless Sensor Networks | mAP | mean Average Precision |
WPT | Wireless power transfer | IB-RRT* | Informed Biased RRT* |
LSTM | long short-term memory | PAL | Person-Action-Locator |
DNs | detection nodes | MILP | Mixed-integer linear programming |
DE | differential evolution | APF | Artificial Potential Field |
SOMAC | self-organized multi-agent competition | CDR | Conflict Detection and Resolution |
MSUDC | master-slave UAV data collection | RRT | Rapidly Exploring Random Trees |
GA | Genetic Algorithm | RDTs | Dense Trees |
IMU | inertial measurement units | PRM | Probability roadmap |
DSM | digital surface model | B-RRT* | Bidirectional RRT* |
MDP | Markov decision process | ACO | Ant Colony Optimization |
MR | mixed reality | IC | inscribed circle |
PSO | Particle Swarm Optimization | FWA | Fireworks Algorithm |
GWO | grey wolf optimization | SPSO | Spherical Vector-Based PSO |
FOA | fruit fly optimization | QPSO | Quantum-based PSO |
CVRP | capacitated Vehicle Routing Problem | SGWO | simplified grey wolf optimizer |
CCPP | co-optimal coverage path planning | MSOS | modified symbiotic organism’s search |
PDE | Partial Differential Equation | MDLS | multi-dimensional dynamic list programming |
MAS | Multi-Agent System | CLPIO | Learning Pigeon-Inspired Optimization |
DMPC | Distributed Model Predictive Control | ADE | Adaptive Differential Evolution |
RL | Reinforcement learning | PPO | proximal policy optimization |
DPG | deterministic policy gradient | DRL | Deep RL |
DDPG | deep deterministic policy gradient | DRM | disaster response management |
MMDP | Modified Model Free Dynamic Programming | DQN | Deep Q-Network algorithm |
FANET | flying ad-hoc network | CCS | central command system |
MPEAOLSR | Multidimensional Perception and Energy Awareness Optimized Link State Routing | IMATISSE | Inundation Monitoring and Alarm Technology in a System of Systems |
References
- Endsley, M.R. Toward a theory of situation awareness in dynamic systems. Hum. Factors 1995, 37, 32–64. [Google Scholar] [CrossRef]
- Azid, S.I.; Ali, S.A.; Kumar, M.; Cirrincione, M.; Fagiolini, A. Precise Trajectory Tracking of Multi-Rotor UAVs Using Wind Disturbance Rejection Approach. IEEE Access 2023, 11, 91796–91806. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, L.; Ma, X.; Liu, Y.; Yang, L.; Yang, F. An anti-disturbance resilience enhanced algorithm for UAV 3D route planning. Sensors 2022, 22, 2151. [Google Scholar] [CrossRef] [PubMed]
- “Airforce-Technology”. Available online: https://www.airforce-technology.com/projects/pc-1-multipurpose-quadcopter/?cf-view (accessed on 16 November 2023).
- Available online: https://www.dpreview.com/articles/8351868841/landscape-photography-with-a-drone-disadvantages-and-limitations (accessed on 20 November 2023).
- “Aeroexpo.Online”. Available online: https://aeroexpo.online/prod/prioria-robotics/product-180931-26810.html (accessed on 28 November 2023).
- Lyu, M.; Zhao, Y.; Huang, C.; Huang, H. Unmanned Aerial Vehicles for Search and Rescue: A Survey. Remote Sens. 2023, 15, 3266. [Google Scholar] [CrossRef]
- Sampedro, C.; Rodriguez-Ramos, A.; Bavle, H.; Carrio, A.; de la Puente, P.; Campoy, P. A fully-autonomous aerial robot for search and rescue applications in indoor environments using learning-based techniques. J. Intell. Robot. Syst. 2019, 95, 601–627. [Google Scholar] [CrossRef]
- Alsamhi, S.H.; Shvetsov, A.V.; Kumar, S.; Shvetsova, S.V.; Alhartomi, M.A.; Hawbani, A.; Rajput, N.S.; Srivastava, S.; Saif, A.; Nyangaresi, V.O. UAV computing-assisted search and rescue mission framework for disaster and harsh environment mitigation. Drones 2022, 6, 154. [Google Scholar] [CrossRef]
- Nikhil, N.; Shreyas, S.; Vyshnavi, G.; Yadav, S. Unmanned aerial vehicles (UAV) in disaster management applications. In Proceedings of the 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 20–22 August 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 140–148. [Google Scholar]
- Erdelj, M.; Natalizio, E.; Chowdhury, K.R.; Akyildiz, I.F. Help from the sky: Leveraging UAVs for disaster management. IEEE Pervasive Comput. 2017, 16, 24–32. [Google Scholar] [CrossRef]
- Ajith, V.; Jolly, K. Unmanned aerial systems in search and rescue applications with their path planning: A review. J. Phys. Conf. Ser. 2021, 2115, 012020. [Google Scholar] [CrossRef]
- Josipovic, N.; Viergutz, K. Smart Solutions for Municipal Flood Management: Overview of Literature, Trends, and Applications in German Cities. Smart Cities 2023, 6, 944–964. [Google Scholar] [CrossRef]
- Wienhold, K.J.; Li, D.; Li, W.; Fang, Z.N. Flood Inundation and Depth Mapping Using Unmanned Aerial Vehicles Combined with High-Resolution Multispectral Imagery. Hydrology 2023, 10, 158. [Google Scholar] [CrossRef]
- Karamuz, E.; Romanowicz, R.J.; Doroszkiewicz, J. The use of unmanned aerial vehicles in flood hazard assessment. J. Flood Risk Manag. 2020, 13, e12622. [Google Scholar] [CrossRef]
- de Haag, M.U.; Martens, M.; Kotinkar, K.; Dommaschk, J. Flight Test Setup for Cooperative Swarm Navigation in Challenging Environments using UWB, GNSS, and Inertial Fusion. In Proceedings of the 2023 IEEE/ION Position, Location and Navigation Symposium (PLANS), Monterey, CA, USA, 24–27 April 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 286–294. [Google Scholar]
- Erdelj, M.; Natalizio, E. UAV-assisted disaster management: Applications and open issues. In Proceedings of the 2016 International Conference on Computing, Networking and Communications (ICNC), Kauai, HI, USA, 15–18 February 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–5. [Google Scholar]
- Zadeh, R.B.; Zaslavsky, A.; Loke, S.W.; MahmoudZadeh, S. Multi-UAVs for Bushfire Situational Awareness: A Comparison of Environment Traversal Algorithms. In Proceedings of the 2021 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics), Melbourne, VIC, Australia, 6–8 December 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 107–114. [Google Scholar]
- Achermann, F.; Lawrance, N.R.; Ranftl, R.; Dosovitskiy, A.; Chung, J.J.; Siegwart, R. Learning to predict the wind for safe aerial vehicle planning. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 2311–2317. [Google Scholar]
- Abdalla, A.S.; Marojevic, V. Machine learning-assisted UAV operations with the UTM: Requirements, challenges, and solutions. In Proceedings of the 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall), Virtual, 18 November–16 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–5. [Google Scholar]
- Huang, S.; Teo, R.S.H.; Tan, K.K. Collision avoidance of multi unmanned aerial vehicles: A review. Annu. Rev. Control 2019, 48, 147–164. [Google Scholar] [CrossRef]
- Yasin, J.N.; Mohamed, S.A.; Haghbayan, M.-H.; Heikkonen, J.; Tenhunen, H.; Plosila, J. Unmanned aerial vehicles (UAVs): Collision avoidance systems and approaches. IEEE Access 2020, 8, 105139–105155. [Google Scholar] [CrossRef]
- Kim, Y.-G.; Chang, W.; Kim, K.; Oh, T. Development of an Autonomous Situational Awareness Software for Autonomous Unmanned Aerial Vehicles. J. Aerosp. Syst. Eng. 2021, 15, 36–44. [Google Scholar]
- Jeon, M.-J.; Park, H.-K.; Jagvaral, B.; Yoon, H.-S.; Kim, Y.-G.; Park, Y.-T. Relationship between UAVs and ambient objects with threat situational awareness through grid map-based ontology reasoning. Int. J. Comput. Appl. 2022, 44, 101–116. [Google Scholar] [CrossRef]
- Cavaliere, D.; Loia, V.; Saggese, A.; Senatore, S.; Vento, M. Semantically enhanced UAVs to increase the aerial scene understanding. IEEE Trans. Syst. Man Cybern. Syst. 2017, 49, 555–567. [Google Scholar] [CrossRef]
- Rios, J.; Smith, D.; Smith, I. UAS Reports (UREPs): EnablingExchange of Observation Data between UAS Operations; NASA: Washington, DC, USA, 2017. [Google Scholar]
- MahmoudZadeh, S.; Yazdani, A. Distributed task allocation and mission planning of AUVs for persistent underwater ecological monitoring and preservation. Ocean Eng. 2023, 290, 116216. [Google Scholar] [CrossRef]
- Zidi, S.; Moulahi, T.; Alaya, B. Fault detection in wireless sensor networks through SVM classifier. IEEE Sens. J. 2017, 18, 340–347. [Google Scholar] [CrossRef]
- Abbasi, A.; MahmoudZadeh, S.; Yazdani, A. A cooperative dynamic task assignment framework for COTSBot AUVs. IEEE Trans. Autom. Sci. Eng. 2020, 19, 1163–1179. [Google Scholar] [CrossRef]
- MahmoudZadeh, S.; Yazdani, A. A cooperative Fault-Tolerant mission planner system for unmanned surface vehicles in ocean sensor network monitoring and inspection. IEEE Trans. Veh. Technol. 2022, 72, 1101–1115. [Google Scholar] [CrossRef]
- Gao, Y.; Li, D. Unmanned aerial vehicle swarm distributed cooperation method based on situation awareness consensus and its information processing mechanism. Knowl.-Based Syst. 2020, 188, 105034. [Google Scholar] [CrossRef]
- Sabour, M.; Jafary, P.; Nematiyan, S. Applications and classifications of unmanned aerial vehicles: A literature review with focus on multi-rotors. Aeronaut. J. 2023, 127, 466–490. [Google Scholar] [CrossRef]
- “Uavos”. Available online: https://www.uavos.com/uavos-fixed-wing-uav-sitaria-completed-flight-tests/ (accessed on 28 December 2023).
- “Goodshoppin”. Available online: https://goodshoppin.top/products.aspx?cname=unmanned+helicopter+drone&cid=226 (accessed on 21 January 2024).
- “Satuav”. Available online: https://www.satuav.com/vtol-fixed-wing-drone/long-range-reconnaissance-drone-with-fixed.html (accessed on 21 January 2024).
- “Trendhunter”. Available online: https://www.trendhunter.com/trends/allterrain-drone (accessed on 21 January 2024).
- “Avinc”. Available online: https://avinc.com/uas/vapor (accessed on 3 February 2024).
- Tiseira, A.; Novella, R.; Garcia-Cuevas, L.; Lopez-Juarez, M. Concept design and energy balance optimization of a hydrogen fuel cell helicopter for unmanned aerial vehicle and aerotaxi applications. Energy Convers. Manag. 2023, 288, 117101. [Google Scholar] [CrossRef]
- Zhang, M.; Li, W.; Wang, M.; Li, S.; Li, B. Helicopter–UAVs search and rescue task allocation considering UAVs operating environment and performance. Comput. Ind. Eng. 2022, 167, 107994. [Google Scholar] [CrossRef]
- Suo, W.; Wang, M.; Zhang, D.; Qu, Z.; Yu, L. Formation control technology of fixed-wing UAV swarm based on distributed ad hoc network. Appl. Sci. 2022, 12, 535. [Google Scholar] [CrossRef]
- Aiello, G.; Valavanis, K.P.; Rizzo, A. Fixed-wing UAV energy efficient 3D path planning in cluttered environments. J. Intell. Robot. Syst. 2022, 105, 60. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, D.; Oo, N.L. Comparison studies on aerodynamic performances of a rotating propeller for small-size UAVs. Aerosp. Sci. Technol. 2023, 133, 108148. [Google Scholar] [CrossRef]
- Phang, S.K.; Ahmed, S.Z.; Hamid, M.R.A. Design, dynamics modelling and control of a H-shape multi-rotor system for indoor navigation. In Proceedings of the 2019 1st International Conference on Unmanned Vehicle Systems-Oman (UVS), Muscat, Oman, 5–7 February 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- “Dslrpros”. Available online: https://www.dslrpros.com/dslrpros-blog/top-10-drones-for-the-construction-industry-in-2023-full-guide-and-reviews/ (accessed on 3 February 2024).
- Townsend, A.; Jiya, I.N.; Martinson, C.; Bessarabov, D.; Gouws, R. A comprehensive review of energy sources for unmanned aerial vehicles, their shortfalls and opportunities for improvements. Heliyon 2020, 6, e05285. [Google Scholar] [CrossRef]
- Wu, J.; Wang, H.; Huang, Y.; Su, Z.; Zhang, M. Energy management strategy for solar-powered UAV long-endurance target tracking. IEEE Trans. Aerosp. Electron. Syst. 2018, 55, 1878–1891. [Google Scholar] [CrossRef]
- Alwateer, M.; Loke, S.W.; Fernando, N. Enabling drone services: Drone crowdsourcing and drone scripting. IEEE Access 2019, 7, 110035–110049. [Google Scholar] [CrossRef]
- Wu, J.; Wang, H.; Li, N.; Yao, P.; Huang, Y.; Yang, H. Path planning for solar-powered UAV in urban environment. Neurocomputing 2018, 275, 2055–2065. [Google Scholar] [CrossRef]
- Lun, Y.; Wang, H.; Wu, J.; Liu, Y.; Wang, Y. Target Search in Dynamic Environments with Multiple Solar-Powered UAVs. IEEE Trans. Veh. Technol. 2022, 71, 9309–9321. [Google Scholar] [CrossRef]
- Esposito, C.; Rizzo, G. Help from above: UAV-empowered network resiliency in post-disaster scenarios. In Proceedings of the 2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 8–11 January 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 477–480. [Google Scholar]
- Ouamri, M.A.; Barb, G.; Singh, D.; Adam, A.B.; Muthanna, M.; Li, X. Nonlinear Energy-Harvesting for D2D Networks Underlaying UAV with SWIPT Using MADQN. IEEE Commun. Lett. 2023, 27, 1804–1808. [Google Scholar] [CrossRef]
- Ahmed, F.; Jenihhin, M. A survey on UAV computing platforms: A hardware reliability perspective. Sensors 2022, 22, 6286. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, W.; Chen, W.; Huang, H.; Guo, S. Online computation offloading and traffic routing for UAV swarms in edge-cloud computing. IEEE Trans. Veh. Technol. 2020, 69, 8777–8791. [Google Scholar] [CrossRef]
- Mao, S.; He, S.; Wu, J. Joint UAV position optimization and resource scheduling in space-air-ground integrated networks with mixed cloud-edge computing. IEEE Syst. J. 2020, 15, 3992–4002. [Google Scholar] [CrossRef]
- Koubâa, A.; Ammar, A.; Alahdab, M.; Kanhouch, A.; Azar, A.T. Deepbrain: Experimental evaluation of cloud-based computation offloading and edge computing in the internet-of-drones for deep learning applications. Sensors 2020, 20, 5240. [Google Scholar] [CrossRef]
- Saraereh, O.A.; Alsaraira, A.; Khan, I.; Uthansakul, P. Performance evaluation of UAV-enabled LoRa networks for disaster management applications. Sensors 2020, 20, 2396. [Google Scholar] [CrossRef]
- Fan, R.; Jiao, J.; Ye, H.; Yu, Y.; Pitas, I.; Liu, M. Key ingredients of self-driving cars. arXiv 2019, arXiv:1906.02939. [Google Scholar]
- Masroor, R.; Naeem, M.; Ejaz, W. Efficient deployment of UAVs for disaster management: A multi-criterion optimization approach. Comput. Commun. 2021, 177, 185–194. [Google Scholar] [CrossRef]
- Hertelendy, A.J.; Al-Wathinani, A.M.; Sultan, M.A.S.; Goniewicz, K. Health sector transformation in Saudi Arabia: The integration of drones to augment disaster and prehospital care delivery. Disaster Med. Public Health Prep. 2023, 17, e448. [Google Scholar] [CrossRef]
- Saif, A.; Dimyati, K.; Noordin, K.A.; Alsamhi, S.H.; Hawbani, A. Multi-UAV and SAR collaboration model for disaster management in B5G networks. Internet Technol. Lett. 2021, 7, e310. [Google Scholar] [CrossRef]
- Kim, H.; Mokdad, L.; Ben-Othman, J. Designing UAV surveillance frameworks for smart city and extensive ocean with differential perspectives. IEEE Commun. Mag. 2018, 56, 98–104. [Google Scholar] [CrossRef]
- Zhang, H.; Dou, L.; Xin, B.; Chen, J.; Gan, M.; Ding, Y. Data collection task planning of a fixed-wing unmanned aerial vehicle in forest fire monitoring. IEEE Access 2021, 9, 109847–109864. [Google Scholar] [CrossRef]
- Hamidi-Alaoui, Z.; El Belrhiti El Alaoui, A. FM-MAC: A fast-mobility adaptive MAC protocol for wireless sensor networks. Trans. Emerg. Telecommun. Technol. 2020, 31, e3782. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, J.; He, H.; Sun, C. Deterministic policy gradient with integral compensator for robust quadrotor control. IEEE Trans. Syst. Man Cybern. Syst. 2019, 50, 3713–3725. [Google Scholar] [CrossRef]
- Gupta, P.M.; Salpekar, M.; Tejan, P.K. Agricultural practices improvement using IoT enabled SMART sensors. In Proceedings of the 2018 International Conference on Smart City and Emerging Technology (ICSCET), Mumbai, India, 5 January 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–5. [Google Scholar]
- Mohsan, S.A.H.; Othman, N.Q.H.; Li, Y.; Alsharif, M.H.; Khan, M.A. Unmanned aerial vehicles (UAVs): Practical aspects, applications, open challenges, security issues, and future trends. Intell. Serv. Robot. 2023, 16, 109–137. [Google Scholar] [CrossRef]
- Wang, Y.; Su, Z.; Zhang, N.; Li, R. Mobile wireless rechargeable UAV networks: Challenges and solutions. IEEE Commun. Mag. 2022, 60, 33–39. [Google Scholar] [CrossRef]
- Dong, F.; Li, L.; Lu, Z.; Pan, Q.; Zheng, W. Energy-efficiency for fixed-wing UAV-enabled data collection and forwarding. In Proceedings of the 2019 IEEE International Conference on Communications Workshops (ICC Workshops), Shanghai, China, 20–24 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- Zhao, Z.-Q.; Zheng, P.; Xu, S.-t.; Wu, X. Object detection with deep learning: A review. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 3212–3232. [Google Scholar] [CrossRef]
- Xu, S.; Savvaris, A.; He, S.; Shin, H.-s.; Tsourdos, A. Real-time implementation of YOLO+ JPDA for small scale UAV multiple object tracking. In Proceedings of the 2018 International Conference on Unmanned Aircraft Systems (ICUAS), Dallas, TX, USA, 12–15 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1336–1341. [Google Scholar]
- Benjdira, B.; Khursheed, T.; Koubaa, A.; Ammar, A.; Ouni, K. Car detection using unmanned aerial vehicles: Comparison between faster R-CNN and YOLOv3. In Proceedings of the 2019 1st International Conference on Unmanned Vehicle Systems-Oman (UVS), Muscat, Oman, 5–7 February 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- Zhu, H.; Qi, Y.; Shi, H.; Li, N.; Zhou, H. Human detection under UAV: An improved faster R-CNN approach. In Proceedings of the 2018 5th International Conference on Systems and Informatics (ICSAI), Nanjing, China, 10–12 November 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 367–372. [Google Scholar]
- Zhu, P.; Wen, L.; Bian, X.; Ling, H.; Hu, Q. Vision meets drones: A challenge. arXiv 2018, arXiv:1804.07437. [Google Scholar]
- Heracleous, C.; Kolios, P.; Panayiotou, C.G. UAV-based system for real-time wildfire perimeter propagation tracking. In Proceedings of the 2023 31st Mediterranean Conference on Control and Automation (MED), Limassol, Cyprus, 26–29 June 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 13–18. [Google Scholar]
- Maltezos, E.; Karagiannidis, L.; Douklias, T.; Dadoukis, A.; Amditis, A.; Sdongos, E. Preliminary design of a multipurpose UAV situational awareness platform based on novel computer vision and machine learning techniques. In Proceedings of the 2020 5th South-East Europe Design Automation, Computer Engineering, Computer Networks and Social Media Conference (SEEDA-CECNSM), Virtual, 25–27 September 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–8. [Google Scholar]
- Huang, H.; Savkin, A.V.; Ni, W. Online UAV trajectory planning for covert video surveillance of mobile targets. IEEE Trans. Autom. Sci. Eng. 2021, 19, 735–746. [Google Scholar] [CrossRef]
- Viswanathan, V.K.; Satpute, S.G.; Nikolakopoulos, G. FLIE: First-Look Enabled Inspect-Explore Autonomy Toward Visual Inspection of Unknown Distributed and Discontinuous Structures. IEEE Access 2023, 11, 28140–28150. [Google Scholar] [CrossRef]
- Li, Q.; Yang, X.; Lu, R.; Fan, J.; Wang, S.; Qin, Z. VisionICE: Air–Ground Integrated Intelligent Cognition Visual Enhancement System Based on a UAV. Drones 2023, 7, 268. [Google Scholar] [CrossRef]
- Santos, N.P.; Rodrigues, V.B.; Pinto, A.B.; Damas, B. Automatic Detection of Civilian and Military Personnel in Reconnaissance Missions using a UAV. In Proceedings of the 2023 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), Tomar, Portugal, 26–27 April 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 157–162. [Google Scholar]
- Hu, X.; Bent, J.; Sun, J. Wildfire monitoring with uneven importance using multiple unmanned aircraft systems. In Proceedings of the 2019 International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA, 11–14 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1270–1279. [Google Scholar]
- Savkin, A.V.; Huang, H. Navigation of a network of aerial drones for monitoring a frontier of a moving environmental disaster area. IEEE Syst. J. 2020, 14, 4746–4749. [Google Scholar] [CrossRef]
- Song, C.; Chen, Z.; Wang, K.; Luo, H.; Cheng, J.C. BIM-supported scan and flight planning for fully autonomous LiDAR-carrying UAVs. Autom. Constr. 2022, 142, 104533. [Google Scholar] [CrossRef]
- Seraj, E.; Gombolay, M. Coordinated control of UAVS for human-centered active sensing of wildfires. In Proceedings of the 2020 American Control Conference (ACC), Denver, CO, USA, 1–3 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1845–1852. [Google Scholar]
- Friedrich, M.; Lieb, T.J.; Temme, A.; Almeida, E.N.; Coelho, A.; Fontes, H. ResponDrone—A Situation Awareness Platform for First Responders. In Proceedings of the 2022 IEEE/AIAA 41st Digital Avionics Systems Conference (DASC), Portsmouth, VA, USA, 18–22 September 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–7. [Google Scholar]
- Yamanouchi, T.; Urakawa, G.; Kashihara, S. UAV 3D-Draping System for Sharing Situational Awareness from Aerial Imagery Data. In Proceedings of the 2021 IEEE Global Humanitarian Technology Conference (GHTC), Seattle, WA, USA, 19–23 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 229–232. [Google Scholar]
- Gomez, C.; Purdie, H. UAV-based photogrammetry and geocomputing for hazards and disaster risk monitoring—A review. Geoenviron. Disasters 2016, 3, 23. [Google Scholar] [CrossRef]
- Kato, S.; Tokunaga, S.; Maruyama, Y.; Maeda, S.; Hirabayashi, M.; Kitsukawa, Y.; Monrroy, A.; Ando, T.; Fujii, Y.; Azumi, T. Autoware on board: Enabling autonomous vehicles with embedded systems. In Proceedings of the 2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS), Porto, Portugal, 11–13 April 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 287–296. [Google Scholar]
- Pacala, A. Lidar as a Camera—Digital Lidar’s Implications for Computer Vision. Ouster Blog, 31 August 2018. Available online: https://ouster.com/insights/blog/the-camera-is-in-the-lidar (accessed on 24 July 2024).
- Qingqing, L.; Xianjia, Y.; Queralta, J.P.; Westerlund, T. Multi-modal lidar dataset for benchmarking general-purpose localization and mapping algorithms. In Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 23–7 October 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 3837–3844. [Google Scholar]
- Xianjia, Y.; Salimpour, S.; Queralta, J.P.; Westerlund, T. Analyzing general-purpose deep-learning detection and segmentation models with images from a lidar as a camera sensor. arXiv 2022, arXiv:2203.04064. [Google Scholar]
- Giordan, D.; Dematteis, N.; Troilo, F. UAV observation of the recent evolution of the Planpincieux Glacier (Mont Blanc-Italy). In Proceedings of the the EGU General Assembly Conference Abstracts, Virtual, 4–8 May 2020; p. 9906. [Google Scholar]
- Qingqing, L.; Xianjia, Y.; Queralta, J.P.; Westerlund, T. Adaptive lidar scan frame integration: Tracking known MAVs in 3D point clouds. In Proceedings of the 2021 20th International Conference on Advanced Robotics (ICAR), Ljubljana, Slovenia, 6–10 December 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1079–1086. [Google Scholar]
- Quentel, A. A Scanning LiDAR for Long Range Detection and Tracking of UAVs. Ph.D. Thesis, Normandie Université, Normandy, France, 2021. [Google Scholar]
- Qi, H.; Feng, C.; Cao, Z.; Zhao, F.; Xiao, Y. P2B: Point-to-box network for 3D object tracking in point clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 6329–6338. [Google Scholar]
- Sier, H.; Yu, X.; Catalano, I.; Queralta, J.P.; Zou, Z.; Westerlund, T. UAV Tracking with Lidar as a Camera Sensor in GNSS-Denied Environments. In Proceedings of the 2023 International Conference on Localization and GNSS (ICL-GNSS), Castellon, Spain, 6–8 June 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–7. [Google Scholar]
- Ding, Y.; Qu, Y.; Zhang, Q.; Tong, J.; Yang, X.; Sun, J. Research on UAV Detection Technology of Gm-APD Lidar Based on YOLO Model. In Proceedings of the 2021 IEEE International Conference on Unmanned Systems (ICUS), Beijing, China, 15–17 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 105–109. [Google Scholar]
- Luo, H.; Wen, C.-Y. A Low-Cost Relative Positioning Method for UAV/UGV Coordinated Heterogeneous System Based on Visual-Lidar Fusion. Aerospace 2023, 10, 924. [Google Scholar] [CrossRef]
- Dogru, S.; Marques, L. Drone detection using sparse lidar measurements. IEEE Robot. Autom. Lett. 2022, 7, 3062–3069. [Google Scholar] [CrossRef]
- Liu, L.; He, J.; Ren, K.; Xiao, Z.; Hou, Y. A LiDAR–camera fusion 3D object detection algorithm. Information 2022, 13, 169. [Google Scholar] [CrossRef]
- An, P.; Liang, J.; Yu, K.; Fang, B.; Ma, J. Deep structural information fusion for 3D object detection on LiDAR–camera system. Comput. Vis. Image Underst. 2022, 214, 103295. [Google Scholar] [CrossRef]
- Igonin, D.M.; Kolganov, P.A.; Tiumentsev, Y.V. Situational awareness and problems of its formation in the tasks of UAV behavior control. Appl. Sci. 2021, 11, 11611. [Google Scholar] [CrossRef]
- Islam, A.; Shin, S.Y. Bus: A blockchain-enabled data acquisition scheme with the assistance of UAV swarm in internet of things. IEEE Access 2019, 7, 103231–103249. [Google Scholar] [CrossRef]
- Na, H.J.; Yoo, S.-J. PSO-based dynamic UAV positioning algorithm for sensing information acquisition in wireless sensor networks. IEEE Access 2019, 7, 77499–77513. [Google Scholar] [CrossRef]
- Geraldes, R.; Goncalves, A.; Lai, T.; Villerabel, M.; Deng, W.; Salta, A.; Nakayama, K.; Matsuo, Y.; Prendinger, H. UAV-based situational awareness system using deep learning. IEEE Access 2019, 7, 122583–122594. [Google Scholar] [CrossRef]
- Martinez-Alpiste, I.; Golcarenarenji, G.; Wang, Q.; Alcaraz-Calero, J.M. Search and rescue operation using UAVs: A case study. Expert Syst. Appl. 2021, 178, 114937. [Google Scholar] [CrossRef]
- Murphy, S.Ó.; Sreenan, C.; Brown, K.N. Autonomous unmanned aerial vehicle for search and rescue using software defined radio. In Proceedings of the 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), Kuala Lumpur, Malaysia, 28 April–1 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- Albanese, A.; Sciancalepore, V.; Costa-Pérez, X. SARDO: An automated search-and-rescue drone-based solution for victims localization. IEEE Trans. Mob. Comput. 2021, 21, 3312–3325. [Google Scholar] [CrossRef]
- Dinh, T.D.; Pirmagomedov, R.; Pham, V.D.; Ahmed, A.A.; Kirichek, R.; Glushakov, R.; Vladyko, A. Unmanned aerial system–assisted wilderness search and rescue mission. Int. J. Distrib. Sens. Netw. 2019, 15, 1550147719850719. [Google Scholar] [CrossRef]
- Lee, H.; Ho, H.W.; Zhou, Y. Deep Learning-based monocular obstacle avoidance for unmanned aerial vehicle navigation in tree plantations: Faster region-based convolutional neural network approach. J. Intell. Robot. Syst. 2021, 101, 5. [Google Scholar] [CrossRef]
- Cao, Y.; Qi, F.; Jing, Y.; Zhu, M.; Lei, T.; Li, Z.; Xia, J.; Wang, J.; Lu, G. Mission Chain Driven Unmanned Aerial Vehicle Swarms Cooperation for the Search and Rescue of Outdoor Injured Human Targets. Drones 2022, 6, 138. [Google Scholar] [CrossRef]
- Steenbeek, A.; Nex, F. CNN-based dense monocular visual SLAM for real-time UAV exploration in emergency conditions. Drones 2022, 6, 79. [Google Scholar] [CrossRef]
- Chen, T.; Gupta, S.; Gupta, A. Learning exploration policies for navigation. arXiv 2019, arXiv:1903.01959. [Google Scholar]
- Chaplot, D.S.; Gandhi, D.; Gupta, S.; Gupta, A.; Salakhutdinov, R. Learning to explore using active neural slam. arXiv 2020, arXiv:2004.05155. [Google Scholar]
- Hu, J.; Zhang, H.; Li, Z.; Zhao, C.; Xu, Z.; Pan, Q. Object traversing by monocular UAV in outdoor environment. Asian J. Control 2021, 23, 2766–2775. [Google Scholar] [CrossRef]
- Shao, P.; Mo, F.; Chen, Y.; Ding, N.; Huang, R. Monocular object SLAM using quadrics and landmark reference map for outdoor UAV applications. In Proceedings of the 2021 IEEE International Conference on Real-time Computing and Robotics (RCAR), Xining, China, 15–19 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1195–1201. [Google Scholar]
- Chen, Q.; Zhu, H.; Yang, L.; Chen, X.; Pollin, S.; Vinogradov, E. Edge computing assisted autonomous flight for UAV: Synergies between vision and communications. IEEE Commun. Mag. 2021, 59, 28–33. [Google Scholar] [CrossRef]
- Ziyang, Z.; Ping, Z.; Yixuan, X.; Yuxuan, J. Distributed intelligent self-organized mission planning of multi-UAV for dynamic targets cooperative search-attack. Chin. J. Aeronaut. 2019, 32, 2706–2716. [Google Scholar]
- Fraga-Lamas, P.; Ramos, L.; Mondéjar-Guerra, V.; Fernández-Caramés, T.M. A review on IoT deep learning UAV systems for autonomous obstacle detection and collision avoidance. Remote Sens. 2019, 11, 2144. [Google Scholar] [CrossRef]
- MahmoudZadeh, S.; Abbasi, A.; Yazdani, A.; Wang, H.; Liu, Y. Uninterrupted path planning system for Multi-USV sampling mission in a cluttered ocean environment. Ocean Eng. 2022, 254, 111328. [Google Scholar] [CrossRef]
- MahmoudZadeh, S.; Yazdani, A.; Kalantari, Y.; Ciftler, B. AUVs’ Distributed Mission Planning System for Effective Underwater Chlorophyll Sampling. In Proceedings of the 2024 2nd International Conference on Unmanned Vehicle Systems-Oman (UVS), Muscat, Oman, 12–14 February 2024. [Google Scholar]
- Yazdani, A.; MahmoudZadeh, S.; Yakimenko, O.; Wang, H. Perception-aware online trajectory generation for a prescribed manoeuvre of unmanned surface vehicle in cluttered unstructured environment. Robot. Auton. Syst. 2023, 169, 104508. [Google Scholar] [CrossRef]
- Akremi, M.S.; Neji, N.; Tabia, H. Visual Navigation of UAVs in Indoor Corridor Environments using Deep Learning. In Proceedings of the 2023 Integrated Communication, Navigation and Surveillance Conference (ICNS), Herndon, VA, USA, 18–20 April 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–6. [Google Scholar]
- Park, B.; Oh, H. Vision-based obstacle avoidance for UAVs via imitation learning with sequential neural networks. Int. J. Aeronaut. Space Sci. 2020, 21, 768–779. [Google Scholar] [CrossRef]
- Yusefi, A.; Durdu, A.; Aslan, M.F.; Sungur, C. LSTM and filter based comparison analysis for indoor global localization in UAVs. IEEE Access 2021, 9, 10054–10069. [Google Scholar] [CrossRef]
- Chekakta, Z.; Zenati, A.; Aouf, N.; Dubois-Matra, O. Robust deep learning LiDAR-based pose estimation for autonomous space landers. Acta Astronaut. 2022, 201, 59–74. [Google Scholar] [CrossRef]
- Liao, F.; Feng, X.; Li, Z.; Wang, D.; Xu, C.; Guang, C.; Qing, Y.; Song, C. A hybrid CNN-LSTM model for diagnosing rice nutrient levels at the rice panicle initiation stage. J. Integr. Agric. 2023, 23, 711–723. [Google Scholar] [CrossRef]
- Kouris, A.; Bouganis, C.-S. Learning to fly by myself: A self-supervised cnn-based approach for autonomous navigation. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–9. [Google Scholar]
- Gandhi, D.; Pinto, L.; Gupta, A. Learning to fly by crashing. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 3948–3955. [Google Scholar]
- Padhy, R.P.; Verma, S.; Ahmad, S.; Choudhury, S.K.; Sa, P.K. Deep neural network for autonomous UAV navigation in indoor corridor environments. Procedia Comput. Sci. 2018, 133, 643–650. [Google Scholar] [CrossRef]
- Smolyanskiy, N.; Kamenev, A.; Smith, J.; Birchfield, S. Toward low-flying autonomous MAV trail navigation using deep neural networks for environmental awareness. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 4241–4247. [Google Scholar]
- Vrba, M.; Saska, M. Marker-less micro aerial vehicle detection and localization using convolutional neural networks. IEEE Robot. Autom. Lett. 2020, 5, 2459–2466. [Google Scholar] [CrossRef]
- Carrio, A.; Vemprala, S.; Ripoll, A.; Saripalli, S.; Campoy, P. Drone detection using depth maps. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1034–1037. [Google Scholar]
- Gu, W.; Valavanis, K.P.; Rutherford, M.J.; Rizzo, A. A survey of artificial neural networks with model-based control techniques for flight control of unmanned aerial vehicles. In Proceedings of the 2019 International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA, 11–14 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 362–371. [Google Scholar]
- Rai, A.; Kannan, R.J. Population coding of generative neuronal cells for collaborative decision making in UAV-based SLAM operations. J. Indian Soc. Remote Sens. 2021, 49, 499–505. [Google Scholar] [CrossRef]
- Khan, A.; Hebert, M. Learning safe recovery trajectories with deep neural networks for unmanned aerial vehicles. In Proceedings of the 2018 IEEE Aerospace Conference, Big Sky, MT, USA, 3–10 March 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–9. [Google Scholar]
- Queralta, J.P.; Raitoharju, J.; Gia, T.N.; Passalis, N.; Westerlund, T. Autosos: Towards multi-UAV systems supporting maritime search and rescue with lightweight AI and edge computing. arXiv 2020, arXiv:2005.03409. [Google Scholar]
- Zhang, Z.; Wu, J.; Dai, J.; He, C. A novel real-time penetration path planning algorithm for stealth UAV in 3D complex dynamic environment. IEEE Access 2020, 8, 122757–122771. [Google Scholar] [CrossRef]
- Chicaiza, F.A.; Slawiñski, E.; Salinas, L.R.; Mut, V.A. Evaluation of path planning with force feedback for bilateral teleoperation of unmanned rotorcraft systems. J. Intell. Robot. Syst. 2022, 105, 34. [Google Scholar] [CrossRef]
- Huang, X.; Sun, R.; Hu, H. An Artificial Potential Field Based Cooperative UAV Conflict Detection and Resolution under Uncertain Communication Environment. In Proceedings of the 2022 IEEE International Conference on Unmanned Systems (ICUS), Guangzhou, China, 28–30 October 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 309–314. [Google Scholar]
- Zhang, M.; Liu, C.; Wang, P.; Yu, J.; Yuan, Q. UAV swarm real-time path planning algorithm based on improved artificial potential field method. In Proceedings of the 2021 International Conference on Autonomous Unmanned Systems (ICAUS 2021), Changsha, China, 24–26 September 2021; Springer: Singapore, 2021; pp. 1933–1945. [Google Scholar]
- Chen, J.; Zhang, Y.; Wu, L.; You, T.; Ning, X. An adaptive clustering-based algorithm for automatic path planning of heterogeneous UAVs. IEEE Trans. Intell. Transp. Syst. 2021, 23, 16842–16853. [Google Scholar] [CrossRef]
- Radmanesh, R.; Kumar, M.; French, D.; Casbeer, D. Towards a PDE-based large-scale decentralized solution for path planning of UAVs in shared airspace. Aerosp. Sci. Technol. 2020, 105, 105965. [Google Scholar] [CrossRef]
- Bahabry, A.; Wan, X.; Ghazzai, H.; Menouar, H.; Vesonder, G.; Massoud, Y. Low-altitude navigation for multi-rotor drones in urban areas. IEEE Access 2019, 7, 87716–87731. [Google Scholar] [CrossRef]
- Bahabry, A.; Wan, X.; Ghazzai, H.; Vesonder, G.; Massoud, Y. Collision-free navigation and efficient scheduling for fleet of multi-rotor drones in smart city. In Proceedings of the 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS), Dallas, TX, USA, 4–7 August 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 552–555. [Google Scholar]
- Cho, S.W.; Park, H.J.; Lee, H.; Shim, D.H.; Kim, S.-Y. Coverage path planning for multiple unmanned aerial vehicles in maritime search and rescue operations. Comput. Ind. Eng. 2021, 161, 107612. [Google Scholar] [CrossRef]
- Ren, S.; Chen, R.; Gao, W. A UAV UGV Collaboration paradigm based on situation awareness: Framework and simulation. In Proceedings of the 2021 International Conference on Autonomous Unmanned Systems (ICAUS 2021), Changsha, China, 24–26 September 2021; Springer: Singapore; pp. 3398–3406. [Google Scholar]
- Atif, M.; Ahmad, R.; Ahmad, W.; Zhao, L.; Rodrigues, J.J. UAV-assisted wireless localization for search and rescue. IEEE Syst. J. 2021, 15, 3261–3272. [Google Scholar] [CrossRef]
- Han, Z.; Zhang, R.; Pan, N.; Xu, C.; Gao, F. Fast-tracker: A robust aerial system for tracking agile target in cluttered environments. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 328–334. [Google Scholar]
- Almurib, H.A.; Nathan, P.T.; Kumar, T.N. Control and path planning of quadrotor aerial vehicles for search and rescue. In Proceedings of the SICE Annual Conference 2011, Tokyo, Japan, 13–18 September 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 700–705. [Google Scholar]
- Hill, V.W.; Thomas, R.W.; Larson, J.D. Autonomous situational awareness for UAS swarms. In Proceedings of the 2021 IEEE Aerospace Conference (50100), Big Sky, MT, USA, 6–13 March 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6. [Google Scholar]
- Oh, C.-G. Implementation of Basic MR-Based Digital Twin to Demonstrate Safe UAM Flight Paths in Urban Areas. 대한인간공학회지 2023, 42, 385–399. [Google Scholar] [CrossRef]
- Li, W.; Wang, L.; Zou, A.; Cai, J.; He, H.; Tan, T. Path planning for UAV based on improved PRM. Energies 2022, 15, 7267. [Google Scholar] [CrossRef]
- Wu, X.; Xu, L.; Zhen, R.; Wu, X. Biased sampling potentially guided intelligent bidirectional RRT* algorithm for UAV path planning in 3D environment. Math. Probl. Eng. 2019, 2019, 5157403. [Google Scholar] [CrossRef]
- Mu, X.; Gao, W.; Li, X.; Li, G. Coverage Path Planning for UAV Based on Improved Back-and-Forth Mode. IEEE Access 2023, 11, 114840–114854. [Google Scholar] [CrossRef]
- Tang, G.; Liu, P.; Hou, Z.; Claramunt, C.; Zhou, P. Motion Planning of UAV for Port Inspection Based on Extended RRT* Algorithm. J. Mar. Sci. Eng. 2023, 11, 702. [Google Scholar] [CrossRef]
- Chuang, H.-M.; He, D.; Namiki, A. Autonomous target tracking of UAV using high-speed visual feedback. Appl. Sci. 2019, 9, 4552. [Google Scholar] [CrossRef]
- Koch, T.; Körner, M.; Fraundorfer, F. Automatic and semantically-aware 3D UAV flight planning for image-based 3D reconstruction. Remote Sens. 2019, 11, 1550. [Google Scholar] [CrossRef]
- Qiming, Y.; Jiandong, Z.; Guoqing, S. Modeling of UAV path planning based on IMM under POMDP framework. J. Syst. Eng. Electron. 2019, 30, 545–554. [Google Scholar]
- Chen, J.; Ye, F.; Jiang, T. Path planning under obstacle-avoidance constraints based on ant colony optimization algorithm. In Proceedings of the 2017 IEEE 17th International Conference on Communication Technology (ICCT), Chengdu, China, 27–30 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1434–1438. [Google Scholar]
- Changxin, Z.; Ligang, W.; Yiding, W.; Xiao, Z.; Yandong, C.; Anming, H.; Anqiao, H. UAV Electric Patrol Path Planning Based on Improved Ant Colony Optimization-A* Algorithm. In Proceedings of the 2022 IEEE International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA), Changchun, China, 25–27 February 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1374–1380. [Google Scholar]
- Li, B.; Qi, X.; Yu, B.; Liu, L. Trajectory planning for UAV based on improved ACO algorithm. IEEE Access 2019, 8, 2995–3006. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhao, H.; Chen, J.; Jia, Y. A novel mission planning method for UAVs’ course of action. Comput. Commun. 2020, 152, 345–356. [Google Scholar] [CrossRef]
- Ge, F.; Li, K.; Xu, W. Path planning of UAV for oilfield inspection based on improved grey wolf optimization algorithm. In Proceedings of the 2019 Chinese Control and Decision Conference (CCDC), Nanchang, China, 3–5 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 3666–3671. [Google Scholar]
- Qu, C.; Gai, W.; Zhang, J.; Zhong, M. A novel hybrid grey wolf optimizer algorithm for unmanned aerial vehicle (UAV) path planning. Knowl.-Based Syst. 2020, 194, 105530. [Google Scholar] [CrossRef]
- Kumar, G.; Anwar, A.; Dikshit, A.; Poddar, A.; Soni, U.; Song, W.K. Obstacle avoidance for a swarm of unmanned aerial vehicles operating on particle swarm optimization: A swarm intelligence approach for search and rescue missions. J. Braz. Soc. Mech. Sci. Eng. 2022, 44, 56. [Google Scholar] [CrossRef]
- Shang, Z.; Bradley, J.; Shen, Z. A co-optimal coverage path planning method for aerial scanning of complex structures. Expert Syst. Appl. 2020, 158, 113535. [Google Scholar] [CrossRef]
- Khan, S.I.; Qadir, Z.; Munawar, H.S.; Nayak, S.R.; Budati, A.K.; Verma, K.D.; Prakash, D. UAVs path planning architecture for effective medical emergency response in future networks. Phys. Commun. 2021, 47, 101337. [Google Scholar] [CrossRef]
- Zhang, X.; Xia, S.; Zhang, T.; Li, X. Hybrid FWPS cooperation algorithm based unmanned aerial vehicle constrained path planning. Aerosp. Sci. Technol. 2021, 118, 107004. [Google Scholar] [CrossRef]
- Duan, T.; Wang, W.; Wang, T. A Review for Unmanned Swarm Gaming: Framework, Model and Algorithm. In Proceedings of the 2022 8th International Conference on Big Data and Information Analytics (BigDIA), Guiyang, China, 24–25 August 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 164–170. [Google Scholar]
- Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Jagannath, J.; Jagannath, A.; Furman, S.; Gwin, T. Deep learning and reinforcement learning for autonomous unmanned aerial systems: Roadmap for theory to deployment. In Deep Learning for Unmanned Systems; Springer: Cham, Switzerland, 2021; pp. 25–82. [Google Scholar]
- Path, D.-S.B.M.-U. Planning and Obstacle Avoidance in a Dynamic Environment. In Advances in Swarm Intelligence: Proceedings of the 9th International Conference, ICSI 2018, Shanghai, China, June 17–22, 2018, Proceedings, Part II; Springer: Cham, Switzerland, 2018; p. 102. [Google Scholar]
- Yan, C.; Xiang, X. A path planning algorithm for UAV based on improved q-learning. In Proceedings of the 2018 2nd International Conference on Robotics and Automation Sciences (ICRAS), Wuhan, China, 23–25 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–5. [Google Scholar]
- Bouhamed, O.; Ghazzai, H.; Besbes, H.; Massoud, Y. Q-learning based routing scheduling for a multi-task autonomous agent. In Proceedings of the 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS), Dallas, TX, USA, 4–7 August 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 634–637. [Google Scholar]
- Sichkar, V.N. Reinforcement learning algorithms in global path planning for mobile robot. In Proceedings of the 2019 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), Sochi, Russia, 25–29 March 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar]
- Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.; Ostrovski, G. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [Google Scholar] [CrossRef]
- Van Hasselt, H.; Guez, A.; Silver, D. Deep reinforcement learning with double Q-learning. In Proceedings of the AAAI′16: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; Volume 30. [Google Scholar]
- Wang, Z.; Schaul, T.; Hessel, M.; Hasselt, H.; Lanctot, M.; Freitas, N. Dueling network architectures for deep reinforcement learning. In Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA, 20–22 June 2016; pp. 1995–2003. [Google Scholar]
- Kersandt, K. Deep Reinforcement Learning as Control Method for Autonomous UAVs. Master’s Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2018. [Google Scholar]
- Peters, J.; Schaal, S. Policy gradient methods for robotics. In Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–13 October 2006; IEEE: Piscataway, NJ, USA, 2006; pp. 2219–2225. [Google Scholar]
- Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.; Riedmiller, M. Deterministic policy gradient algorithms. In Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA, 20–22 June 2016; pp. 387–395. [Google Scholar]
- Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep reinforcement learning. arXiv 2015, arXiv:1509.02971. [Google Scholar]
- Rodriguez-Ramos, A.; Sampedro, C.; Bavle, H.; De La Puente, P.; Campoy, P. A deep reinforcement learning strategy for UAV autonomous landing on a moving platform. J. Intell. Robot. Syst. 2019, 93, 351–366. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, J.; Shi, G.; Hu, J.; Wu, Y. Maneuver decision of UAV in short-range air combat based on deep reinforcement learning. IEEE Access 2019, 8, 363–378. [Google Scholar] [CrossRef]
- Wang, C.; Wang, J.; Shen, Y.; Zhang, X. Autonomous navigation of UAVs in large-scale complex environments: A deep reinforcement learning approach. IEEE Trans. Veh. Technol. 2019, 68, 2124–2136. [Google Scholar] [CrossRef]
- Li, H.; He, H. Multiagent Trust Region Policy Optimization. IEEE Trans. Neural Netw. Learn. Syst. 2023, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017, arXiv:1707.06347. [Google Scholar]
- Pham, H.X.; La, H.M.; Feil-Seifer, D.; Van Nguyen, L. Reinforcement learning for autonomous UAV navigation using function approximation. In Proceedings of the 2018 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Philadelphia, PA, USA, 6–8 August 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6. [Google Scholar]
- Abedin, S.F.; Munir, M.S.; Tran, N.H.; Han, Z.; Hong, C.S. Data freshness and energy-efficient UAV navigation optimization: A deep reinforcement learning approach. IEEE Trans. Intell. Transp. Syst. 2020, 22, 5994–6006. [Google Scholar] [CrossRef]
- Din, A.F.U.; Akhtar, S.; Maqsood, A.; Habib, M.; Mir, I. Modified model free dynamic programming: An augmented approach for unmanned aerial vehicle. Appl. Intell. 2023, 53, 3048–3068. [Google Scholar] [CrossRef]
- Chronis, C.; Anagnostopoulos, G.; Politi, E.; Dimitrakopoulos, G.; Varlamis, I. Dynamic Navigation in Unconstrained Environments Using Reinforcement Learning Algorithms. IEEE Access 2023, 11, 117984–118001. [Google Scholar] [CrossRef]
- Merabet, A.; Lakas, A.; Belkacem, A.N. WPT-enabled multi-UAV path planning for disaster management deep Q-network. In Proceedings of the 2023 International Wireless Communications and Mobile Computing (IWCMC), Marrakesh, Morocco, 19–23 June 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1672–1678. [Google Scholar]
- Li, Z.; Lu, Y.; Li, X.; Wang, Z.; Qiao, W.; Liu, Y. UAV networks against multiple maneuvering smart jamming with knowledge-based reinforcement learning. IEEE Internet Things J. 2021, 8, 12289–12310. [Google Scholar] [CrossRef]
- Singh, R.; Qu, C.; Esquivel Morel, A.; Calyam, P. Location Prediction and Trajectory Optimization in Multi-UAV Application Missions. In Intelligent Unmanned Air Vehicles Communications for Public Safety Networks; Springer: Singapore, 2022; pp. 105–131. [Google Scholar]
- Scukins, E.; Klein, M.; Ögren, P. Enhancing situation awareness in beyond visual range air combat with reinforcement learning-based decision support. In Proceedings of the 2023 International Conference on Unmanned Aircraft Systems (ICUAS), Warsaw, Poland, 6–June 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 56–62. [Google Scholar]
- Liu, D.; Bao, W.; Zhu, X.; Fei, B.; Xiao, Z.; Men, T. Vision-aware air-ground cooperative target localization for UAV and UGV. Aerosp. Sci. Technol. 2022, 124, 107525. [Google Scholar] [CrossRef]
- Causa, F.; Opromolla, R.; Fasano, G. Closed loop integration of air-to-air visual measurements for cooperative UAV navigation in GNSS challenging environments. Aerosp. Sci. Technol. 2022, 130, 107947. [Google Scholar] [CrossRef]
- Zhang, Y.; Xingjian, W.; Shaoping, W.; Xinyu, T. Distributed bearing-based formation control of unmanned aerial vehicle swarm via global orientation estimation. Chin. J. Aeronaut. 2022, 35, 44–58. [Google Scholar] [CrossRef]
- Yang, C.; Wang, D.; Zeng, Y.; Yue, Y.; Siritanawan, P. Knowledge-based multimodal information fusion for role recognition and situation assessment by using mobile robot. Inf. Fusion 2019, 50, 126–138. [Google Scholar] [CrossRef]
- Kwon, C.; Hwang, I. Sensing-based distributed state estimation for cooperative multiagent systems. IEEE Trans. Autom. Control 2018, 64, 2368–2382. [Google Scholar] [CrossRef]
- Zhang, H.; Tao, Y.; Lv, X.; Liu, Y. Master-slave UAV-assisted WSNs for Improving Data Collection Rate and Shortening Flight Time. IEEE Sens. J. 2023, 99, 26597–26607. [Google Scholar] [CrossRef]
- MahmoudZadeh, S.; Yazdani, A.; Elmi, A.; Abbasi, A.; Ghanooni, P. Exploiting a fleet of UAVs for monitoring and data acquisition of a distributed sensor network. Neural Comput. Appl. 2022, 34, 5041–5054. [Google Scholar] [CrossRef]
- Zadeh, R.B.; Zaslavsky, A.; Loke, S.W.; MahmoudZadeh, S. A multiagent mission coordination system for continuous situational awareness of bushfires. IEEE Trans. Autom. Sci. Eng. 2022, 20, 1275–1291. [Google Scholar] [CrossRef]
- Liao, Z.; Wang, S.; Shi, J.; Sun, Z.; Zhang, Y.; Sial, M.B. Cooperative situational awareness of multi-UAV system based on improved DS evidence theory. Aerosp. Sci. Technol. 2023, 142, 108605. [Google Scholar] [CrossRef]
- Yingrong, Y.; Jianglong, Y.; Yishi, L.; Zhang, R. Distributed state estimation for heterogeneous mobile sensor networks with stochastic observation loss. Chin. J. Aeronaut. 2022, 35, 265–275. [Google Scholar]
- Zhu, H.; Li, J.; Gao, Y.; Cheng, G. Consensus analysis of UAV swarm cooperative situation awareness. In Proceedings of the 2020 International Conference on Virtual Reality and Intelligent Systems (ICVRIS), Zhangjiajie, China, 18–19 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 415–418. [Google Scholar]
- Zhang, Y.; Xiao, Q.; Deng, X.; Jiang, W. A multi-source information fusion method for ship target recognition based on Bayesian inference and evidence theory. J. Intell. Fuzzy Syst. 2022, 42, 2331–2346. [Google Scholar] [CrossRef]
- Luo, J.; Liu, J.; Liang, Q. UAV swarm trajectory planning based on a novel particle swarm optimization. In Proceedings of the 2021 International Conference on Autonomous Unmanned Systems (ICAUS 2021), Changsha, China, 24–26 September 2021; Springer: Singapore; pp. 509–520. [Google Scholar]
- Shen, L.; Wang, Y.; Liu, K.; Yang, Z.; Shi, X.; Yang, X.; Jing, K. Synergistic path planning of multi-UAVs for air pollution detection of ships in ports. Transp. Res. Part E Logist. Transp. Rev. 2020, 144, 102128. [Google Scholar] [CrossRef]
- Phung, M.D.; Ha, Q.P. Safety-enhanced UAV path planning with spherical vector-based particle swarm optimization. Appl. Soft Comput. 2021, 107, 107376. [Google Scholar] [CrossRef]
- Ali, Z.A.; Han, Z.; Masood, R.J. Collective motion and self-organization of a swarm of UAVs: A cluster-based architecture. Sensors 2021, 21, 3820. [Google Scholar] [CrossRef] [PubMed]
- Ali, Z.A.; Zhangang, H.; Hang, W.B. Cooperative path planning of multiple UAVs by using max–min ant colony optimization along with cauchy mutant operator. Fluct. Noise Lett. 2021, 20, 2150002. [Google Scholar] [CrossRef]
- Xu, C.; Xu, M.; Yin, C. Optimized multi-UAV cooperative path planning under the complex confrontation environment. Comput. Commun. 2020, 162, 196–203. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, J.; Wei, C. Hawk and pigeon’s intelligence for UAV swarm dynamic combat game via competitive learning pigeon-inspired optimization. Sci. China Technol. Sci. 2022, 65, 1072–1086. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, H.; Liu, S.; Guo, L.; Yeoh, P.L.; Vucetic, B.; Li, Y. Distributed multi-agent target tracking: A nash-combined adaptive differential evolution method for UAV systems. IEEE Trans. Veh. Technol. 2021, 70, 8122–8133. [Google Scholar] [CrossRef]
- Akin, E.; Demir, K.; Yetgin, H. Multiagent Q-learning based UAV trajectory planning for effective situationalawareness. Turk. J. Electr. Eng. Comput. Sci. 2021, 29, 2561–2579. [Google Scholar] [CrossRef]
- Kim, I.; Morrison, J.R. Learning based framework for joint task allocation and system design in stochastic multi-UAV systems. In Proceedings of the 2018 International Conference on Unmanned Aircraft Systems (ICUAS), Dallas, TX, USA, 12–15 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 324–334. [Google Scholar]
- Guerra, A.; Guidi, F.; Dardari, D.; Djuric, P.M. Reinforcement Learning for Joint Detection & Mapping using Dynamic UAV Networks. IEEE Trans. Aerosp. Electron. Syst. 2024, 60, 2586–2601. [Google Scholar]
- Qu, C.; Singh, R.; Morel, A.E.; Sorbelli, F.B.; Calyam, P.; Das, S.K. Obstacle-aware and energy-efficient multi-drone coordination and networking for disaster response. In Proceedings of the 2021 17th International Conference on Network and Service Management (CNSM), Virtual, 25–29 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 446–454. [Google Scholar]
- Qu, C.; Sorbelli, F.B.; Singh, R.; Calyam, P.; Das, S.K. Environmentally-aware and energy-efficient multi-drone coordination and networking for disaster response. IEEE Trans. Netw. Serv. Manag. 2023, 20, 1093–1109. [Google Scholar] [CrossRef]
- Prakash, M.; Neelakandan, S.; Kim, B.-H. Reinforcement Learning-Based Multidimensional Perception and Energy Awareness Optimized Link State Routing for Flying Ad-Hoc Networks. Mob. Netw. Appl. 2023, 1–19. [Google Scholar] [CrossRef]
- Chen, Y.; Dong, Q.; Shang, X.; Wu, Z.; Wang, J. Multi-UAV autonomous path planning in reconnaissance missions considering incomplete information: A reinforcement learning method. Drones 2022, 7, 10. [Google Scholar] [CrossRef]
- Qu, C.; Gai, W.; Zhong, M.; Zhang, J. A novel reinforcement learning based grey wolf optimizer algorithm for unmanned aerial vehicles (UAVs) path planning. Appl. Soft Comput. 2020, 89, 106099. [Google Scholar] [CrossRef]
- Femminella, M.; Reali, G. Gossip-based monitoring protocol for 6G networks. IEEE Trans. Netw. Serv. Manag. 2023, 20, 4126–4140. [Google Scholar] [CrossRef]
- Yeo, S.; Bae, M.; Jeong, M.; Kwon, O.K.; Oh, S. Crossover-SGD: A gossip-based communication in distributed deep learning for alleviating large mini-batch problem and enhancing scalability. Concurr. Comput. Pract. Exp. 2023, 35, e7508. [Google Scholar] [CrossRef]
- Mikavica, B.; Kostić-Ljubisavljević, A. Blockchain-based solutions for security, privacy, and trust management in vehicular networks: A survey. J. Supercomput. 2021, 77, 9520–9575. [Google Scholar] [CrossRef]
- Vincent, N.E.; Skjellum, A.; Medury, S. Blockchain architecture: A design that helps CPA firms leverage the technology. Int. J. Account. Inf. Syst. 2020, 38, 100466. [Google Scholar] [CrossRef]
- Frey, M.A.; Attmanspacher, J.; Schulte, A. A dynamic Bayesian network and Markov decision process for tactical UAV decision making in MUM-T scenarios. In Proceedings of the 2022 IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA), Salerno, Italy, 6–10 June 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 47–54. [Google Scholar]
- Habibi, H.; Yazdani, A.; Darouach, M.; Wang, H.; Fernando, T.; Howard, I. Observer-based sensor fault tolerant control with prescribed tracking performance for a class of nonlinear systems. IEEE Trans. Autom. Control 2023, 68, 8259–8266. [Google Scholar] [CrossRef]
- Ghanooni, P.; Habibi, H.; Yazdani, A.; Wang, H.; MahmoudZadeh, S.; Ferrara, A. Prescribed performance control of a robotic manipulator with unknown control gain and assigned settling time. ISA Trans. 2024, 145, 330–354. [Google Scholar] [CrossRef]
- Raoufi, M.; Habibi, H.; Yazdani, A.; Wang, H. Robust prescribed trajectory tracking control of a robot manipulator using adaptive finite-time sliding mode and extreme learning machine method. Robotics 2022, 11, 111. [Google Scholar] [CrossRef]
- Federal Aviation Administration (FAA). Summary of Small Unmanned Aircraft Rule (Part 107). Available online: https://www.faa.gov/newsroom/small-unmanned-aircraft-systems-uas-regulations-part-107 (accessed on 6 February 2024).
- European Union Aviation Safety Agency (EASA). UAS Regulations. Available online: https://www.easa.europa.eu/en/regulations (accessed on 6 February 2024).
- International Civil Aviation Organization (ICAO). Manual on Remotely Piloted Aircraft Systems (RPAS). Available online: https://www.icao.int/Pages/default.aspx (accessed on 6 February 2024).
Pros | Cons | Applications | |
---|---|---|---|
Unmanned Helicopter |
|
|
|
Fixed-Wing UAVs |
|
|
|
Multirotor or Rotary UAVs |
|
|
|
UAV Platform | DJI Phantom 4 Pro V2.0 | Phantom 4 RTK |
Processor | Quad-core, 4-Plus-1™ ARM® | Quad-core, 4-Plus-1™ ARM® |
Positioning Systems | GPS, GLONASS | RTK Module, GPS |
Max Transmission Distance | ~7 km | ~5 km |
Weight | 1375 g | 1391 g |
Max directional Speed | 72 km/h | 58 km/h |
Max Altitude | 503 m | 500 m |
Max Flight Time | ~30 min | ~30 min |
Max Flight Range | ~10 km | ~7 km |
Battery Capacity | 5870 mAh | 5870 mAh |
UAV Platform | Parrot Anafi USA | DJI Inspire 2 |
Processor | ARM Cortex A8@1GHz | Quad-core, 4-Plus-1™ ARM® |
Positioning Systems | GPS, GLONASS, Galileo, QZSS | Vision Positioning System, GPS/GLONASS |
Max Transmission Distance | ~5 km | ~7 km |
Weight | 644 g | 3290 g |
Max directional Speed | 53 km/h | 108 km/h |
Max Altitude | 5000 m | 2500 m |
Max Flight Time | ~32 min | ~27 min |
Max Flight Range | ~5 km | ~7 km |
Battery Capacity | 3400 mAh | 4280 mAh |
UAV Platform | DJI Mavic 2 Enterprise Advanced | DJI Mavic 2 Pro |
Processor | Intel® Core™ i3 or AMD Phenom processor, | Quad-core, 4-Plus-1™ ARM® |
Positioning Systems | RTK Module, GPS | GPS, GLONASS |
Max Transmission Distance | ~6–10 km | ~18 km |
Weight | 1100 g | 907 g |
Max directional Speed | 72 km/h | 72 km/h |
Max Altitude | 6000 m | 6000 m |
Max Flight Time | ~31 min | ~30 min |
Max Flight Range | ~10 km | ~18 km |
Battery Capacity | 3850 mAh | 3850 mAh |
UAV Platform | DJI Mavic Air 2 | DJI Mavic 3 Enterprise |
Processor | Quad-core, 4-Plus-1™ ARM® | Quad-core, 4-Plus-1™ ARM® |
Positioning Systems | GPS, GLONASS | GPS, GLONASS, and Galileo |
Max Transmission Distance | ~10 km | ~15 km |
Weight | 570 g | 1050 g |
Max directional Speed | 72 km/h | 68.4 km/h |
Max Altitude | 5000 m | 6000 m |
Max Flight Time | ~34 min | ~45 min |
Max Flight Range | ~18.5 km | ~32 km |
Battery Capacity | 3500 mAh | 5000 mAh |
UAV Platform | Yuneec Typhoon H3 | Yuneec H520E |
Processor | DJI-supported Quad-core, 4-Plus-1™ ARM® | Intel quad-core processor with OFDM support |
Positioning Systems | GPS and compass systems | GPS, GLONASS, Galileo, BeiDou |
Max Transmission Distance | ~2 km | ~3.5–7 km |
Weight | 1985 g | 1860 g |
Max directional Speed | 48.3 km/h | 48.6 km/h |
Max Altitude | 499 m | 500 m |
Max Flight Time | ~25 min | ~28 min |
Max Flight Range | ~2 km | ~3.5 km |
Battery Capacity | 5250 mAh | 6200 mAh |
UAV Platform | DJI Matrice 300 RTK | Matrice M210 V2 |
Processor | Quad-core, 4-Plus-1™ ARM® | NVIDIA-Tegra K1, Cortex A-15 32-bit CPU. Kepler GPU + 192 CUDA cores. |
Positioning Systems | RTK, GPS, GLONASS, BeiDou, Galileo | RTK Module, GPS, GLONASS |
Max Transmission Distance | ~15 km | ~8 km |
Weight | 6300 g | 4910 g |
Max directional Speed | 83 km/h | 73.8 km/h |
Max Altitude | 7000 m | 3000 m |
Max Flight Time | ~55 min | ~33 min |
Max Flight Range | ~15 km | ~8 km |
Battery Capacity | 5935 mAh | 4280 mAh |
Advantages | Limitations | |
---|---|---|
WSN and Distributed Sensors |
|
|
Vision and Systems |
|
|
LiDAR and Onboard Sensor Sets |
|
|
Common challenges |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
MahmoudZadeh, S.; Yazdani, A.; Kalantari, Y.; Ciftler, B.; Aidarus, F.; Al Kadri, M.O. Holistic Review of UAV-Centric Situational Awareness: Applications, Limitations, and Algorithmic Challenges. Robotics 2024, 13, 117. https://doi.org/10.3390/robotics13080117
MahmoudZadeh S, Yazdani A, Kalantari Y, Ciftler B, Aidarus F, Al Kadri MO. Holistic Review of UAV-Centric Situational Awareness: Applications, Limitations, and Algorithmic Challenges. Robotics. 2024; 13(8):117. https://doi.org/10.3390/robotics13080117
Chicago/Turabian StyleMahmoudZadeh, Somaiyeh, Amirmehdi Yazdani, Yashar Kalantari, Bekir Ciftler, Fathi Aidarus, and Mhd Omar Al Kadri. 2024. "Holistic Review of UAV-Centric Situational Awareness: Applications, Limitations, and Algorithmic Challenges" Robotics 13, no. 8: 117. https://doi.org/10.3390/robotics13080117