Squint Mode GEO SAR Imaging Using Bulk Range Walk Correction on Received Signals
Abstract
:1. Introduction
2. Slant Range History of Squint Mode GEO SAR
3. Bulk Range Walk Correction on Receive
3.1. Doppler Bandwidth of GEO SAR
3.2. Adjusting the Starting Time of the Receive Window
4. Squint Imaging Algorithm for GEO SAR after Correcting Bulk Range Walk
4.1. Operations in the Range Direction
4.2. Operation in the Azimuth Direction
5. Simulation and Analysis
5.1. Simulation Method and Parameters
5.2. Observation Duration Comparison
5.3. Imaging Results and Analysis
6. Discussion
6.1. Accuracy
6.2. Computational Load
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
References
- Tomiyasu, K. Synthetic aperture radar in geosynchronous orbit. In Proceedings of the 1978 Antennas and Propagation Society International Symposium, Washington, DC, USA, 9–13 March 1978; pp. 42–45. [Google Scholar] [CrossRef]
- Tomiyasu, K.; Pacelli, J.L. Synthetic Aperture Radar Imaging from an Inclined Geosynchronous Orbit. IEEE Trans. Geosci. Remote Sens. 1983, GE-21, 324–329. [Google Scholar] [CrossRef]
- Global Earthquake Satellite System: A 20-Year Plan to Enable Earthquake Prediction, JPL Document, NASA and JPL, Tech. Rep. JPL 400-1069. 2003. Available online: https://solidearth.jpl.nasa.gov/GESS/3123_GESS_Rep_2003.pdf (accessed on 18 April 2003).
- Madsen, S.N.; Edelstein, W.; DiDomenico, L.D.; LaBrecque, J. A geosynchronous synthetic aperture radar; for tectonic mapping, disaster management and measurements of vegetation and soil moisture. In Proceedings of the IGARSS 2001, Sydney, Australia, 9–13 July 2001; Volume 1, pp. 447–449. [Google Scholar] [CrossRef]
- Li, D.; Wu, M.; Sun, Z.; He, F.; Dong, Z. Modeling and Processing of Two-Dimensional Spatial-Variant Geosynchronous SAR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3999–4009. [Google Scholar] [CrossRef]
- Li, Z.; Li, C.; Yu, Z.; Zhou, J.; Chen, J. Back projection algorithm for high resolution GEO-SAR image formation. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; pp. 336–339. [Google Scholar] [CrossRef]
- Ulander, L.M.H.; Hellsten, H.; Stenstrom, G. Synthetic-aperture radar processing using fast factorized back-projection. IEEE Trans. Aerosp. Electron. Syst. 2003, 39, 760–776. [Google Scholar] [CrossRef]
- Cafforio, C.; Prati, C.; Rocca, F. SAR data focusing using seismic migration techniques. IEEE Trans. Aerosp. Electron. Syst. 1991, 27, 194–207. [Google Scholar] [CrossRef]
- Raney, R.K.; Runge, H.; Bamler, R.; Cumming, I.G.; Wong, F.H. Precision SAR processing using chirp scaling. IEEE Trans. Geosci. Remote Sens. 1994, 32, 786–799. [Google Scholar] [CrossRef]
- Franceschetti, G.; Lanari, R.; Marzouk, E.S. A new two-dimensional squint mode SAR processor. IEEE Trans. Aerosp. Electron. Syst. 1996, 32, 854–863. [Google Scholar] [CrossRef]
- Bao, M.; Xing, M.D.; Li, Y.C. Chirp scaling algorithm for GEO SAR based on fourth-order range equation. Electron. Lett. 2012, 48, 41–42. [Google Scholar] [CrossRef]
- Hu, C.; Long, T.; Tian, Y. An Improved Nonlinear Chirp Scaling Algorithm Based on Curved Trajectory in Geosynchronous SAR. Prog. Electromagn. Res. 2013, 135, 481–513. [Google Scholar] [CrossRef]
- Zeng, T.; Yang, W.; Ding, Z.; Liu, D.; Long, T. A Refined Two-Dimensional Nonlinear Chirp Scaling Algorithm for Geosynchronous Earth Orbit SAR. Prog. Electromagn. Res. 2013, 143, 19–46. [Google Scholar] [CrossRef]
- Sun, G.; Xing, M.; Wang, Y.; Yang, J.; Bao, Z. A 2-D Space-Variant Chirp Scaling Algorithm Based on the RCM Equalization and Subband Synthesis to Process Geosynchronous SAR Data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4868–4880. [Google Scholar] [CrossRef]
- Chen, J.; Sun, G.; Wang, Y.; Xing, M.; Li, Z.; Zhang, Q.; Liu, L.; Dai, C. A TSVD-NCS Algorithm in Range-Doppler Domain for Geosynchronous Synthetic Aperture Radar. IEEE Geosci. Remote Sens. Lett. 2016, 13, 13–1635. [Google Scholar] [CrossRef]
- Yu, Z.; Lin, P.; Xiao, P.; Kang, L.; Li, C. Correcting spatial variance of RCM for geo sar imaging based on time-frequency scaling. Sensors 2016, 16, 1091. [Google Scholar] [CrossRef]
- Ding, Z.; Shu, B.; Yin, W.; Zeng, T.; Long, T. A Modified Frequency Domain Algorithm Based on Optimal Azimuth Quadratic Factor Compensation for Geosynchronous SAR Imaging. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1119–1131. [Google Scholar] [CrossRef]
- Zhang, T.; Ding, Z.; Tian, W.; Zeng, T.; Yin, W. A 2-D Nonlinear Chirp Scaling Algorithm for High Squint GEO SAR Imaging Based on Optimal Azimuth Polynomial Compensation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 5724–5735. [Google Scholar] [CrossRef]
- Motohka, T.; Kankaku, Y.; Suzuki, S.; Shimada, M. Status of the advanced land observing satellite-2 (ALOS-2) and its follow-on L-band SAR mission. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 2427–2429. [Google Scholar] [CrossRef]
- Cumming, I.G.; Wong, F.H. Digital Signal Processing of Synthetic Aperture Radar Data; Artech House: Norwood, MA, USA, 2004. [Google Scholar]
- Geng, J.; Yu, Z.; Lin, P.; Xiao, P.; Li, C. Fourth-order chirp scaling imaging algorithm for Geosynchronous Synthetic Aperture Radar. In Proceedings of the EUSAR 2018, 12th European Conference on Synthetic Aperture Radar, Aachen, Germany, 4–7 June 2018; pp. 1–5. [Google Scholar]
- Davidson, G.W.; Cumming, I.G.; Ito, M.R. A chirp scaling approach for processing squint mode SAR data. IEEE Trans. Aerosp. Electron. Syst. 1996, 32, 121–133. [Google Scholar] [CrossRef]
- Neo, Y.L.; Wong, F.; Cumming, I.G. A Two-Dimensional Spectrum for Bistatic SAR Processing Using Series Reversion. IEEE Geosci. Remote Sens. Lett. 2007, 4, 93–96. [Google Scholar] [CrossRef] [Green Version]
Parameter | Value |
---|---|
Semi-major Axis (km) | 42,164.3 |
Inclination (°) | 60 |
Eccentricity | 0 |
Longitude of Ascend Node (°) | 100 |
Wavelength (m) | 0.24 |
Longitude of Wenchuan County, China (°) | 103.4 E |
Latitude of Wenchuan County, China (°) | 31.0 N |
Index | AOL (°) | Longitute-Latitude of Nadir (°) | gvar | (°) | (°) | (°) | (s) |
---|---|---|---|---|---|---|---|
A | 47.10 | (81.18E, 39.38N) | 0.955 | 26.95 | 3.18 | 1.30 | 365.08 |
B | 67.29 | (82.78E, 53.02N) | 0.965 | 24.48 | 4.43 | 0.67 | 465.53 |
C | 107.66 | (114.83E, 55.61N) | 0.965 | −31.66 | 4.35 | 0.37 | 529.99 |
D | 131.22 | (119.07E, 40.65N) | 0.959 | −39.51 | 2.74 | −0.43 | 428.13 |
E | 185.05 | (97.48E, 4.37S) | 0.981 | 62.53 | −3.61 | −4.48 | 714.52 |
F | 343.18 | (108.23E, 14.51S) | 0.964 | −58.63 | −4.15 | 5.52 | 722.26 |
Azimuth Direction | Range Direction | ||||||
---|---|---|---|---|---|---|---|
Method | Target | Res (m) | PSLR (dB) | ISLR (dB) | Res (m) | PSLR (dB) | ISLR (dB) |
Algorithm proposed by Zhang et al. [18] | T1 | 55.622 | −15.129 | −19.633 | 1.578 | −12.963 | −10.624 |
T2 | 4.810 | −12.525 | −10.279 | 1.522 | −13.279 | −10.050 | |
T3 | 33.486 | −0.809 | −1.828 | 1.522 | −9.213 | −7.721 | |
Proposed Algorithm | T1 | 4.775 | −13.256 | −10.295 | 1.534 | −13.351 | −10.138 |
T2 | 4.800 | −13.168 | −10.153 | 1.534 | −13.264 | −10.039 | |
T3 | 4.973 | −13.323 | −10.091 | 1.534 | −13.310 | −10.119 |
Azimuth Direction | Range Direction | ||||||
---|---|---|---|---|---|---|---|
Method | Target | Res (m) | PSLR (dB) | ISLR (dB) | Res (m) | PSLR (dB) | ISLR (dB) |
Proposed Algorithm | T1 | 4.656 | −13.233 | −9.695 | 1.318 | −13.298 | −10.097 |
T2 | 4.866 | −13.310 | −10.253 | 1.309 | −13.233 | −10.031 | |
T3 | 4.952 | −13.158 | −10.250 | 1.318 | −13.324 | −10.139 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, J.; Yu, Z.; Li, C.; Liu, W. Squint Mode GEO SAR Imaging Using Bulk Range Walk Correction on Received Signals. Remote Sens. 2019, 11, 17. https://doi.org/10.3390/rs11010017
Geng J, Yu Z, Li C, Liu W. Squint Mode GEO SAR Imaging Using Bulk Range Walk Correction on Received Signals. Remote Sensing. 2019; 11(1):17. https://doi.org/10.3390/rs11010017
Chicago/Turabian StyleGeng, Jiwen, Ze Yu, Chunsheng Li, and Wei Liu. 2019. "Squint Mode GEO SAR Imaging Using Bulk Range Walk Correction on Received Signals" Remote Sensing 11, no. 1: 17. https://doi.org/10.3390/rs11010017