Design and Implementation of a Multi-Band Active Radar Calibrator for SAR
Abstract
:1. Introduction
2. Materials and Methods
2.1. Principles of ARC
2.2. The multi-band ARC
3. Results
3.1. Design of the ARC
3.1.1. Antenna Design
3.1.2. RF Subsystem Design
3.1.3. Design Specifications
3.2. Manufacture and Integration of the ARC
3.3. Measurement of the ARC
3.3.1. Gain Stability
3.3.2. System Transfer Function
3.3.3. Gain over Frequency Bandwidth
3.3.4. Linearity of the ARC Receiver
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Touzi, R.; Hawkins, R.K.; Côté, S. High-precision assessment and calibration of polarimetric radarsat-2 SAR using transponder measurements. IEEE Trans. Geosci. Remote Sens. 2013, 51, 487–503. [Google Scholar] [CrossRef]
- Lenz, R.; Pontes, J.; Wiesbeck, W. A high accuracy calibration and receive instrument for TerraSAR-X ground calibration. In Proceedings of the European Radar Conference, Paris, France, 3–4 October 2005; pp. 427–430. [Google Scholar]
- Paul, S.; Evert, A.; Bjoern, R.; Nicolas, F.; Malcolm, D.; Berthyl, D. Transponder development for Sentinel-1. In Proceedings of the 8th European Conference on Synthetic Aperture Radar, Aachen, Germany, 7–10 June 2010; pp. 354–357. [Google Scholar]
- Matthias, J.; Björn, D.; Daniel, R.; Sebastian, R.; Marco, S. Development of the highly accurate DLR Kalibri transponder. In Proceedings of the 10th European Conference on Synthetic Aperture Radar, Berlin, Germany, 3–5 June 2014; pp. 1176–1179. [Google Scholar]
- Ming, F.; Hong, J.; Li, L. The external calibration system of GF-3 satellite. In Proceedings of the 12th European Conference on Synthetic Aperture Radar, Aachen, Germany, 4–6 June 2018; pp. 417–420. [Google Scholar]
- Li, L.; Zhu, Y.T.; Hong, J.; Ming, F.; Wang, Y. Design and implementation of a novel polarimetric active radar calibrator for Gaofen-3 SAR. Sensors 2018, 18, 2620. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.B.; Jia, Z.Z.; Qiu, X.; Hong, J.; Zhang, Q.; Lei, B.; Zhang, F.; Deng, Z.; Wang, A. Polarimetric calibration of the GaoFen-3 mission using active radar calibrators and the applicable conditions of system model for radar polarimeters. Remote Sens. 2019, 11, 176. [Google Scholar] [CrossRef]
- Woode, A.D.; Desnos, Y.L.; Jackson, H. The development and first results from the ESTEC ERS-1 active radar calibration unit. IEEE Trans. Geosci. Remote Sens. 1992, 30, 1122–1130. [Google Scholar] [CrossRef]
- Fujita, M. Development of a retrodirective PARC for ALOS/PALSAR calibration. IEEE Trans. Geosci. Remote Sens. 2003, 4, 2177–2186. [Google Scholar] [CrossRef]
- Li, L.; Hong, J.; Ming, F. Study on digital coded technology in active radar calibrator of SAR. In Proceedings of the International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 4509–4512. [Google Scholar]
- Freeman, A.; Shen, Y.; Werner, C.L. Polarimetric SAR calibration experiment using active radar calibrators. IEEE Trans. Geosci. Remote Sens. 1990, 28, 224–240. [Google Scholar] [CrossRef]
- Schena, V.D.; Posa, F.; Ponte, S.; De Carolis, G. Development and performance validation of L-, C- and X-band active radar calibrators (ARC) by means of laboratory tests and SIR-C/X-SAR experiments. In Proceedings of the International Geoscience and Remote Sensing Symposium, Firenze, Italy, 10–14 July 1995; pp. 80–82. [Google Scholar]
- Sarabandi, K.; Kashanianfard, M.; Nashashibi, A.Y.; Pierce, L.E.; Hampton, R. A polarimetric active transponder with extremely large RCS for absolute radiometric calibration of SMAP radar. IEEE Trans. Geosci. Remote Sens. 2018, 56, 1269–1277. [Google Scholar] [CrossRef]
- Massimiliano, P.; Lapo, M. Cross-pol transponder with frequency shifter for bistatic ground-based synthetic aperture radar. Remote Sens. 2018, 10, 1364. [Google Scholar]
- Zhang, X.X. Unified jamming equation of synthetic aperture radar. J. China Acad. Electron. Inf. Technol. 2006, 1, 107–113. [Google Scholar]
- Skolnik, M. Introduction to Radar Systems; McGraw-Hill Education: New York, NY, USA, 2002. [Google Scholar]
- Zhang, Q.; Yuan, C.W.; Liu, L. Radiation characteristics of L/C dual-band coaxial horn feed for high power microwaves. High Power Part. Beam. 2011, 1, 146–150. (In Chinese) [Google Scholar] [CrossRef]
- Lin, W.Q.; Zhang, Z.Y.; Fu, G. Design of a high gain and low cross-polarization tri-band horn antenna. In Proceedings of the International Conference Microwave and Millimeter Wave Technology (ICMMT), Chengdu, China, 6–10 May 2018; pp. 1–3. [Google Scholar]
- Li, L.; Hong, J.; Wang, Y.; Yi, M.; Zhu, Y.; Ming, F. In orbit calibration of GF-3 SAR using quad-polarized transponder. Acta Electron. Scin. 2017, 46, 2157–2164. (In Chinese) [Google Scholar]
- Park, D.J.; Ahn, S.I.; Chun, Y.S.; Shin, J.M.; Yoon, J.C.; Kim, J.H. Development of active transponder for KOMPSAT-5 mission. In Proceedings of the 3rd International Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Seoul, Korea, 26–30 September 2011; pp. 794–797. [Google Scholar]
- Jackson, H.D.; Alan, W. Development of the ERS-1 active radar calibration Unit. IEEE Trans. Microwave Theory Tech. 1992, 40, 1063–1069. [Google Scholar] [CrossRef]
- Rudolf, D.; Raab, S.; Döring, B.J.; Jirousek, M.; Reimann, J.; Schwerdt, M. Absolute radiometric calibration of the novel DLR “Kalibri” transponder. In Proceedings of the Germany Microwave Conference, Nuremberg, Germany, 16–18 March 2015; pp. 323–326. [Google Scholar]
- Rudolf, D.; Döring, B.J.; Matthias, J. Absolute radiometric calibration of C-Band transponders with proven plausibility. In Proceedings of the 10th European Conference on Synthetic Aperture Radar, Berlin, Germany, 3–5 June 2014; pp. 1180–1183. [Google Scholar]
- Lenz, R.; Pontes, J.; Wiesbeck, W. The TerraSAR-X ground calibration system and pattern estimation software. In Proceedings of the International Geoscience and Remote Sensing Symposium, Seoul, Korea, 25–29 July 2005; pp. 4894–4897. [Google Scholar]
Parameter | Value |
---|---|
Frequency | L/C/X/Ka-bands |
Band | 200 MHz (L-band), 240 MHz (C-band), 1200 MHz (X/Ka-bands) |
Radar cross section (RCS) | 35~55 dBsm |
Range delay | 0.5 μs, 1 μs, 2 μs, |
RCS step | 5 dB |
Polarization Isolation | More than 40 dB |
RCS stability | 0.2 dB (L/C/X-bands), 0.3 dB (Ka-band) |
Gain flatness | 1 dBp_p (L/C/X-band), 3 dBp_p (Ka-band) |
Dynamic range | L: approx. −15.9 dBm/m2 to −69.9 dBm/m2 C: approx. −3 dBm/m2 to −68 dBm/m2 X: approx. 1.5 dBm/m2 to −58.5 dBm/m2 Ka: approx. −9.25 dBm/m2 to −43.25 dBm/m2 |
Polarization | H-pol (L-band), H and V-pol (C/X-bands), V-pol (Ka-band) |
Antenna pointing precision | Better than 0.2° |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Liu, G.; Hong, J.; Ming, F.; Wang, Y. Design and Implementation of a Multi-Band Active Radar Calibrator for SAR. Remote Sens. 2019, 11, 1312. https://doi.org/10.3390/rs11111312
Li L, Liu G, Hong J, Ming F, Wang Y. Design and Implementation of a Multi-Band Active Radar Calibrator for SAR. Remote Sensing. 2019; 11(11):1312. https://doi.org/10.3390/rs11111312
Chicago/Turabian StyleLi, Liang, Gukun Liu, Jun Hong, Feng Ming, and Yu Wang. 2019. "Design and Implementation of a Multi-Band Active Radar Calibrator for SAR" Remote Sensing 11, no. 11: 1312. https://doi.org/10.3390/rs11111312