Searching for Viking Age Fortresses with Automatic Landscape Classification and Feature Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Data and Data Processing
2.3. Ring Detection
2.4. Refinements
2.5. Landscape Context Classification
2.6. Evaluation
2.7. Ground Truthing
3. Results
3.1. Summary
3.2. Archaeological Candidate Sites
3.3. Geological Sites
4. Discussion
4.1. Evaluating Our Approach
4.2. Borgø-Archaeological Consideration
4.3. Trælbanke-Archaeological Considerations
4.4. Archaeological Implications
4.5. Detection of the Natural Surface Feature
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Keay, S.J.; Parcak, S.H.; Strutt, K.D. High resolution space and ground-based remote sensing and implications for landscape archaeology: The case from Portus, Italy. J. Archaeol. Sci. 2014, 52, 277–292. [Google Scholar] [CrossRef]
- Evans, D.; Fletcher, R. The landscape of Angkor Wat redefined. Antiquity 2015, 89, 1402–1419. [Google Scholar] [CrossRef]
- Stott, D.; Kristiansen, S.M.; Lichtenberger, A.; Raja, R. Mapping an ancient city with a century of remotely sensed data. Proc. Natl. Acad. Sci. USA 2018, 115, E5450–E5458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folco, L.; Di Martino, M.; El Barkooky, A.; D’Orazio, M.; Lethy, A.; Urbini, S.; Nicolosi, I.; Hafez, M.; Cordier, C.; van Ginneken, M.; et al. The Kamil Crater in Egypt. Sci. Express 2010. [Google Scholar] [CrossRef] [PubMed]
- Kjær, K.H.; Larsen, N.K.; Binder, T.; Bjork, A.A.; Eisen, O.; Fahnestock, M.A.; Funder, S.; Garde, A.A.; Haack, H.; Helm, V.; et al. A large impact crater beneath Hiawatha Glacier in northwest Greenland. Sci. Adv. 2018, 4. [Google Scholar] [CrossRef] [PubMed]
- Goodchild, H.; Holm, N.; Sindbaek, S.M. Borgring: The discovery of a Viking Age ring fortress. Antiquity 2017, 91, 1027–1042. [Google Scholar] [CrossRef]
- Roesdahl, E.; Sindbæk, S.M. The purpose of the fortress. In Aggersborg: The Viking-Age Settlement and Fortress; Roesdahl, E., Sindbæk, S.M., Pedersen, A., Wilson, D.M., Eds.; Jysk Arkæologisk Selskabs Skrifter: Højbjerg, Denmark, 2014; Bind Volume 82; pp. 383–414. [Google Scholar]
- Olsen, O.; Schmidt, H. Fyrkat: En jysk vikingeborg. In Borgen og Bebyggelsen. Med et Bidrag af Hilmar Ødum og en Excurs af Hans Helbæk; Det kgl. nordiske Oldskriftselskab: København, Denmark, 1977; p. 282. [Google Scholar]
- Christensen, J.; Holm, N.; Schultz, M.K.; Sindbæk, S.M.; Ulriksen, J. The Borgring Project 2016–2018. In The Fortified Viking Age: 36th Interdisciplinary Viking Symposium; Hansen, J., Bruus, M., Eds.; Syddansk Universitetsforlag: Odense, Denmark, 2018; Volume 3, pp. 60–68. [Google Scholar]
- Trier, Ø.D.; Cowley, D.C.; Waldeland, A.U. Using deep neural networks on airborne laser scanning data: Results from a case study of semi-automatic mapping of archaeological topography on Arran, Scotland. Archaeol. Prospect. 2019, 26, 165–175. [Google Scholar] [CrossRef]
- Guyot, A.; Hubert-Moy, L.; Lorho, T. Detecting Neolithic burial mounds from LiDAR-derived elevation data using a multi-scale approach and machine learning techniques. Remote Sens. 2018, 10, 225. [Google Scholar] [CrossRef]
- Rizaldy, A.; Persello, C.; Gevaert, C.M.; Oude Elberink, S.J. Fully Convolutional Networks for Ground Classification from Lidar Point Clouds. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 2. [Google Scholar] [CrossRef]
- Colgan, M.S.; Baldeck, C.A.; Feret, J.B.; Asner, G.P. Mapping Savanna Tree Species at Ecosystem Scales Using Support Vector Machine Classification and BRDF Correction on Airborne Hyperspectral and LiDAR Data. Remote Sens. 2012, 4, 3462–3480. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.S.; Piramanayagam, S.; Monteiro, S.T.; Saber, E. Dense Semantic Labeling of Very-High-Resolution Aerial Imagery and LiDAR with Fully-Convolutional Neural Networks and Higher-Order CRFs. IEEE Comput. Soc. Conf. 2017, 1561–1570. [Google Scholar] [CrossRef]
- Meng, X.L.; Currit, N.; Wang, L.; Yang, X.J. Detect Residential Buildings from Lidar and Aerial Photographs through Object-Oriented Land-Use Classification. Photogramm. Eng. Remote Sens. 2012, 78, 35–44. [Google Scholar] [CrossRef]
- Roesdahl, E. Aggersborg’s location and history. In Aggersborg—The Viking-Age Settlement and Fortress; Roesdahl, E., Sindbaek, S.M., Eds.; Jutland Archaeological Society: Højbjerg, Denmark, 2014; Volume 83, pp. 17–30. [Google Scholar]
- Gammeltoft, P.; Jakobsen, J.G.G.; Sindbæk, S.M. Vikingetidens bebyggelse omkring Kattegat og Skagerrak: Et forsøg på kortlægning. In Et Fælles Hav: Skagerrak og Kattegat i Vikingetiden; Pedersen, A., Sindbæk, S.M., Eds.; Nordlige Verdener: København, Denmark, 2015; pp. 6–23. [Google Scholar]
- Jain, A.; Zongker, D. Feature selection: Evaluation, application, and small sample performance. IEEE Trans. Pattern Anal. Mach. Intell. 1997, 19, 153–158. [Google Scholar] [CrossRef]
- Chen, X.W.; Lin, X.T. Big Data Deep Learning: Challenges and Perspectives. IEEE Access 2014, 2, 514–525. [Google Scholar] [CrossRef]
- Zhang, C.; Bengio, S.; Hardt, M.; Recht, B.; Vinyals, O. Understanding deep learning requires rethinking generalization. arXiv 2016, arXiv:physics/0402096. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Belgiu, M.; Dragut, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Strobl, C.; Malley, J.; Tutz, G. An Introduction to Recursive Partitioning: Rationale, Application, and Characteristics of Classification and Regression Trees, Bagging, and Random Forests. Psychol. Methods 2009, 14, 323–348. [Google Scholar] [CrossRef]
- Flemming, L. Ny højdemodel-nu også landsdækkende. GeologiskNyt 2007, 6, 4–6. [Google Scholar] [CrossRef]
- Rosenkranz, B.; Lund, J. Danmarks Højdemodel-én model med et utal af anvendelser. Geoforum Perspekt. 2015, 14, 1–9. [Google Scholar]
- Vennersdorf, M. Den lille (terræn-)forskel—Danmarks Højdemodel som kilde til erosion og slid på arkæologiske lokaliteter i dyrket mark. Arkæologisk Forum 2017, 37, 8–14. [Google Scholar]
- Doneus, M.; Briese, C.; Fera, M.; Janner, M. Archaeological prospection of forested areas using full-waveform airborne laser scanning. J. Archaeol. Sci. 2008, 35, 882–893. [Google Scholar] [CrossRef]
- Hesse, R. LiDAR-derived Local Relief Models—A new tool for archaeological prospection. Archaeol. Prospect. 2010, 17, 67–72. [Google Scholar] [CrossRef]
- Mitchell, D.P.; Netravali, A.N. Reconstruction filters in computer-graphics. ACM SIGGRAPH Comput. Graph. 1988, 22, 221–228. [Google Scholar] [CrossRef] [Green Version]
- van der Walt, S.; Schonberger, J.L.; Nunez-Iglesias, J.; Boulogne, F.; Warner, J.D.; Yager, N.; Gouillart, E.; Yu, T.; Contributors, S.I. Scikit-image: Image processing in Python. PeerJ 2014, 2. [Google Scholar] [CrossRef] [PubMed]
- Illingworth, J.; Kittler, J. The Adaptive Hough Transform. IEEE Trans. Pattern Anal. Mach. Intell. 1987, 9, 690–698. [Google Scholar] [CrossRef]
- Cerrillo-Cuenca, E. An approach to the automatic surveying of prehistoric barrows through LiDAR. Quat. Int. 2017, 435, 135–145. [Google Scholar] [CrossRef]
- Schubert, E.; Sander, J.; Ester, M.; Kriegel, H.P.; Xu, X.W. DBSCAN Revisited, Revisited: Why and How You Should (Still) Use DBSCAN. ACM T. Database Syst. 2017, 42. [Google Scholar] [CrossRef]
- Ester, M.; Kriegel, H.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the KDD’96 Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Portland, OR, USA, 2–4 August 1996; pp. 226–231. [Google Scholar]
- Schneider, A.; Takla, M.; Nicolay, A.; Raab, A.; Raab, T. A Template-matching Approach Combining Morphometric Variables for Automated Mapping of Charcoal Kiln Sites. Archaeol. Prospect. 2015, 22, 45–62. [Google Scholar] [CrossRef]
- Freeland, T.; Heung, B.; Burley, D.V.; Clark, G.; Knudby, A. Automated feature extraction for prospection and analysis of monumental earthworks from aerial LiDAR in the Kingdom of Tonga. J. Archaeol. Sci. 2016, 69, 64–74. [Google Scholar] [CrossRef]
- Trier, O.D.; Larsen, S.O.; Solberg, R. Automatic Detection of Circular Structures in High-resolution Satellite Images of Agricultural Land. Archaeol. Prospect. 2009, 16, 1–15. [Google Scholar] [CrossRef]
- Kvamme, K. An Examination of Automated Archaeological Feature Recognition in Remotely Sensed Imagery. In Computational Approaches to Archaeological Spaces; Bevan, A., Lake, M., Eds.; Routledge: Abingdon-on-Thames, UK, 2016; pp. 53–86. [Google Scholar]
- Verdonck, L. Detection of Buried Roman Wall Remains in Ground-penetrating Radar Data using Template Matching. Archaeol. Prospect. 2016, 23, 257–272. [Google Scholar] [CrossRef]
- Lewis, J.P. Fast template matching. Vision Interface 1995, 95, 120–123. [Google Scholar]
- Bryant, R.H.; Carenter, C.P. Ramparted ground ice depressions in Britain and Ireland. In Periglacial Processes and Landforms in Britain and Ireland; Boardman, J., Ed.; Cambridge University Press: Cambridge, UK, 1987; pp. 183–190. [Google Scholar]
- Sørensen, P.B.; Lykke-Andersen, H. Kortlægning af pingo-rester i Danmark. Geol. Tidsskr. 2017, 2017, 21–29. [Google Scholar]
- Guisan, A.; Weiss, S.B.; Weiss, A.D. GLM versus CCA spatial modeling of plant species distribution. Plant Ecol. 1999, 143, 107–122. [Google Scholar] [CrossRef]
- Korsgaard, P. Videnskabernes Selskabs kort. Geoforum Perspekt. 2004, 3, 5–13. [Google Scholar]
- Jørgensen, B. Danske Stednavne; Gyldendal: Copenhagen, Denmark, 2008. [Google Scholar]
- De Reu, J.; Bourgeois, J.; Bats, M.; Zwertvaegher, A.; Gelorini, V.; De Smedt, P.; Chu, W.; Antrop, M.; De Maeyer, P.; Finke, P.; et al. Application of the topographic position index to heterogeneous landscapes. Geomorphology 2013, 186, 39–49. [Google Scholar] [CrossRef]
- Riley, J.W.; Calhoun, D.L.; Barichivich, W.J.; Walls, S.C. Identifying Small Depressional Wetlands and Using a Topographic Position Index to Infer Hydroperiod Regimes for Pond-Breeding Amphibians. Wetlands 2017, 37, 325–338. [Google Scholar] [CrossRef]
- Knudsen, B.N. Danske stednavne på den digitale vej: Status på DigDag-projektet og digitaliseringen af Danmarks Stednavne. In Proceedings of the Den Femtende Nordiske Navneforskerkongres, Askov, Denmark, 6–9 June 2012; pp. 249–261. [Google Scholar]
- Jakobsen, J.; Gøgsig, G.; Gammeltoft, P. Stednavne som kilde til Sjællands bebyggelseshistorie i middelalderen. In Middelalderlig Landbebyggelses På Sjælland Og Øerne; Forlaget Hikuin: Højbjerg, Denmark, 2017. [Google Scholar]
- Andersen, H. De Glemte Borge. Skalk: Nyt Fra Fortiden 1992, 1/1992, 19–30. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Steffensen, B.; Colding, T.S.; Carstens, A.M. Free Geodata Have Made the Number of Users of the Map Supply Website Explode. Geoforum Perspekt. 2014, 13. [Google Scholar] [CrossRef]
- Marmol, U.; Jachimski, J. A FFT based method of filtering airborne laser scanner data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2004, 35, 1147–1152. [Google Scholar]
- Tsai, F.; Chen, W.W. Striping Noise Detection and Correction of Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2008, 46, 4122–4131. [Google Scholar] [CrossRef]
- Runge, M.; Henriksen, M.B. The origins of Odense–new aspects of early urbanisation in southern Scandinavia. Dan. J. Archaeol. 2018, 7, 1–67. [Google Scholar] [CrossRef]
- Andreasen, J. FHM 5201 Trælborg, Tiset Sogn, Ning Herred, Tidligere Århus amt, Sted nr.15.04.09 Sb.nr. 10; Moesgaard Museum: Moesgaard, Denmark, 2016. [Google Scholar]
- French, B.M.; Koeberl, C. The convincing identification of terrestrial meteorite impact structures: What works, what doesn’t, and why. Earth-Sci. Rev. 2010, 98, 123–170. [Google Scholar] [CrossRef]
- Grieve, R.A.F.; Pesonen, L.J. The Terrestrial Impact Cratering Record. Tectonophysics 1992, 216, 1–30. [Google Scholar] [CrossRef]
- French, H.M. The Periglacial Environment, 4th ed.; John Wiley and Sons: Oxford, UK, 2018; p. 515. [Google Scholar]
- Davis, D.S. Object-based image analysis: A review of developments and future directions of automated feature detection in landscape archaeology. Archaeol. Prospect. 2019, 26, 155–163. [Google Scholar] [CrossRef]
- Lambers, K.; Traviglia, A. Automated detection in remote sensing archaeology: A reading list. AARGnews-Newsl. Aer. Archaeol. Res. Group 2016, 53, 5. [Google Scholar]
- Traviglia, A.; Cowley, D.; Lambers, K. Finding common ground: Human and computer vision in archaeological prospection. AARGnews-Newsl. Aer. Archaeol. Res. Group 2016, 53, 14. [Google Scholar]
- Lambers, K.; Verschoof-van der Vaart, W.B.; Bourgeois, Q.P.J. Integrating Remote Sensing, Machine Learning, and Citizen Science in Dutch Archaeological Prospection. Remote Sens. 2019, 11. [Google Scholar] [CrossRef]
- Trier, Ø.; Salberg, A.B.; Pilø, L.H. Semi-automatic mapping of charcoal kilns from airborne laser scanning data using deep learning. In Oceans of Data, Proceedings of the 44th Annual Conference on Computer Applications and Quantitative Methods in Archaeology, Oslo, Norway, 29 March–2 April 2016; Archaeopress Publishing Ltd.: Oxford, UK, 2016; pp. 221–231. [Google Scholar]
- Zingman, I.; Saupe, D.; Penatti, O.A.B.; Lambers, K. Detection of Fragmented Rectangular Enclosures in Very High Resolution Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4580–4593. [Google Scholar] [CrossRef]
- Verschoof-van der Vaart, W.B.; Lambers, K. Learning to Look at LiDAR: The Use of R-CNN in the Automated Detection of Archaeological Objects in LiDAR Data from the Netherlands. J. Comput. Appl. 2019, 2, 10. [Google Scholar]
- Zhu, L.; Tateishi, R. Fusion of multisensor multitemporal satellite data for land cover mapping. Int. J. Remote Sens. 2006, 27, 903–918. [Google Scholar] [CrossRef]
- Benediktsson, J.A.; Sveinsson, J.R.; Swain, P.H. Hybrid consensus theoretic classification. IEEE Trans. Geosci. Remote Sens. 1997, 35, 833–843. [Google Scholar] [CrossRef] [Green Version]
- Sevara, C.; Verhoeven, G.; Doneus, M.; Draganits, E. Surfaces from the Visual Past: Recovering High-Resolution Terrain Data from Historic Aerial Imagery for Multitemporal Landscape Analysis. J. Archaeol. Method Theory 2018, 25, 611–642. [Google Scholar] [CrossRef]
- Olesen, L.H. Aerial archaeology in Denmark. AARG News 2004, 28, 28–35. [Google Scholar]
- Fortidsminder, F. Available online: www.kulturarv.dk/fundogfortidsminder/ (accessed on 3 March 2018).
- Petersen, T.P. Refshaleborg—Borgen på øen i Søen; Museum Lolland-Falster: Nykøbing Falster, Denmark, 2015; p. 6. [Google Scholar]
- Biermann, F. North-western Slavic strongholds of the 8th–10th centuries AD. In Fortified Settlements in Early Medieval Europe. Defended Communities of the 8th–10th Centuries; Christie, N., Herold, N., Eds.; Oxbow Books: Oxford, UK; Philadelphia, PA, USA, 2016; pp. 85–94. [Google Scholar]
- Naum, M. Difficult middles, hybridity and ambivalence of a medieval frontier: The cultural landscape of Lolland and Falster (Denmark). J. Mediev. Hist. 2012, 38, 56–75. [Google Scholar] [CrossRef]
- Henning, J. Der slawische Siedlungsraum und die ottonische Expansion östlich der Elbe. Ereignisgeschichte, Archäologie, Dendrochronologie. In Europa im 10t Jahrhundert. Archäologie Einer Aufbruchszeit; Henninj, J., Verlag, P., Eds.; von Zabern: Mainz am Rhein, Germany, 2002; pp. 131–146. [Google Scholar]
- Harck, O. Archäologische Untersuchungen in Wallanlagen Nordfrieslands. Ber. Römisch-Ger. Komm. 1986, 67, 362–372. [Google Scholar]
- Overgaard, A.M. Diger i Fortid, Nutid og Fremtid; Nationalpark Vadehavet: Esbjerg, Denmark, 2016. [Google Scholar]
- Harck, O. Archsum auf Sylt. 3, Die Ausgrabungen in den RöMerzeitlichen Erdwerken Archsumburg, Tinnumburg uund Traelbanken an der Westküste Schleswigs; Verlag, P., Ed.; von Zabern: Mainz am Rhein, Germany, 1990. [Google Scholar]
- Segschneider, M. Die Ringwälle auf den nordfriesischen Inseln. In Ringwälle und Verwandte Strukturen des Ersten Jahrtauseds n. Chr. An Nord-und Ostsee; Segschneider, M., Ed.; Wachholtz: Neumünster, Germany, 2009; pp. 99–111. [Google Scholar]
- Thurston, T.L. Landscapes of Power, Landscapes of Conflict: State Formation in the South Scandinavian Iron Age; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Høy, T.; Dahl, J. Søerne i Storstrøm Amt og Bornholm; Strandbergs Forlag: Charlottenlund, Denmark, 1991. [Google Scholar]
- Wu, Q.; Deng, C.; Chen, Z. Automated delineation of karst sinkholes from LiDAR-derived digital elevation models. Geomorphology 2016, 266, 1–10. [Google Scholar] [CrossRef]
- Certini, G.; Scalenghe, R.; Woods, W.I. The impact of warfare on the soil environment. Earth-Sci. Rev. 2013, 127, 1–15. [Google Scholar] [CrossRef]
- Zhang, C.X.; Yue, P.; Di, L.P.; Wu, Z.Y. Automatic Identification of Center Pivot Irrigation Systems from Landsat Images Using Convolutional Neural Networks. Agriculture 2018, 8. [Google Scholar] [CrossRef]
- Silburt, A.; Ali-Dib, M.; Zhu, C.; Jackson, A.; Valencia, D.; Kissin, Y.; Tamayo, D.; Menou, K. Lunar crater identification via deep learning. Icarus 2019, 317, 27–38. [Google Scholar] [CrossRef]
- Hanson, W.S.; Oltean, I.A. Archaeology from Historical Aerial and Satellite Archives; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Cowley, D.C.; Stichelbaut, B.B. Historic Aerial Photographic Archives for European Archaeology. Eur. J. Archaeol. 2012, 15, 217–236. [Google Scholar] [CrossRef]
- Sevara, C. Top secret topographies: Recovering two and three-dimensional archaeological information from historic reconnaissance datasets using image-based modelling techniques. Int. J. Herit. Digit. Era 2 2013, 3, 395–418. [Google Scholar] [CrossRef]
- Krogh, S.O.; Dypvik, H.; Etzelmuller, B. Automatic detection of circular depressions in digital elevation data in the search for potential Norwegian impact structures. Norw. J. Geol. 2007, 87, 157–166. [Google Scholar]
Parameter | Description | Usage | Explanation |
---|---|---|---|
Minimum radius (minRad) | The minimum radius identified in the point cluster | Where (maxRad − minRad) > 5 | Discard likely modern sites with narrow rampart widths |
Maximum radius (maxRad) | The maximum radius identified in the point cluster | ||
Xσ | Standard deviation of the points within the cluster in the X dimension | Where (max(XσYσ)/min(XσYσ)) < 1.1 | A large ratio between these parameters indicates a more amorphous feature (e.g., river meanders with changing radii) |
Yσ | Standard deviation of the points within the cluster in the Y dimension | ||
Score maximum | The normalized maximum score from the ring finding algorithm | Score maximum > 0.26 | Established using known Trelleborg-type sites |
Dataset | Description | Motivation |
---|---|---|
Coast | 18th Century coastline | It has been hypothesized that proximity to the sea is an important determinant for ring fortress location |
Rivers | 18th Century water courses | These represent barriers to movement, sources of fresh water, and potential communication routes. |
Water bodies and water meadows (enge) | 18th Century lakes and marshes | Barriers to movement. |
Major roads | 18th Century major roads (landevej) communication routes between large population centers. | Known ring fortresses are located near important routes between population centers. |
Minor roads | 18th Century minor roads between villages and hamlets | Minor communication routes could also be important. |
Name | Meaning | Justification |
---|---|---|
borg | Fortress, hill | Common element in ring fortress names (e.g., Borgring, Trelleborg, Aggersborg, Borgeby) |
borre | As borg | |
banke | Bank, hill | Found in association with a number of fortresses |
træl | Slave, thrall | Found in association with a number of earlier fortresses (e.g., Trælborg) |
trelle | Staves, palisade/pallisade | Associated with ring fortresses at Trelleborg on Zealand and in Sweden |
ring | Ring | Associated with a ring fortress at Borgring |
trold | Troll, wizard | Found in association with a number of earlier fortresses (e.g., Troldborg) |
Class | Description | n |
---|---|---|
Kettle hole | Glacial kettle holes and possible pingo remains | 86 |
Meanders | River meanders, oxbow lakes | 11 |
Ringborg | Recognized Viking Age ring fortresses | 5 |
Feature | Feature Importance |
---|---|
Topographic Position Index (140-m radius) | 0.26 |
Topographic Position Index (70-m radius) | 0.16 |
18th Century Major roads | 0.1 |
18th Century Rivers | 0.09 |
18th Century Minor roads | 0.07 |
~ring place name element | 0.06 |
Slope | 0.05 |
Coast | 0.05 |
Lakes, bogs, and water meadows | 0.05 |
~borre place name element | 0.04 |
~borg place name element | 0.04 |
~bank place name element | 0.04 |
trold~ place name element | 0.02 |
træl~ place name element | 0.01 |
trelle~ place name element | 0.01 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stott, D.; Kristiansen, S.M.; Sindbæk, S.M. Searching for Viking Age Fortresses with Automatic Landscape Classification and Feature Detection. Remote Sens. 2019, 11, 1881. https://doi.org/10.3390/rs11161881
Stott D, Kristiansen SM, Sindbæk SM. Searching for Viking Age Fortresses with Automatic Landscape Classification and Feature Detection. Remote Sensing. 2019; 11(16):1881. https://doi.org/10.3390/rs11161881
Chicago/Turabian StyleStott, David, Søren Munch Kristiansen, and Søren Michael Sindbæk. 2019. "Searching for Viking Age Fortresses with Automatic Landscape Classification and Feature Detection" Remote Sensing 11, no. 16: 1881. https://doi.org/10.3390/rs11161881