Quick Aboveground Carbon Stock Estimation of Densely Planted Shrubs by Using Point Cloud Derived from Unmanned Aerial Vehicle
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Aboveground Carbon-Stock Accounting of the Densely Planted Shrub Belt
2.3. Shrub Belt Volume Estimation by Using UAV Data
2.4. Estimated Empirical Equation and Verification
3. Results
3.1. Aboveground Carbon Stock of Surveyed Shrub Belts
3.2. Plant Volume Accounting for Shrub Belts Detected by a UAV
3.3. Estimated Empirical Equation and Verification
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lewis, S.L.; Wheeler, C.E.; Mitchard, E.T.A.; Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 2019, 568, 25–28. [Google Scholar] [CrossRef]
- Gallagher, K.L.; Zhang, F.; Orvis, R.; Rissman, J.; Liu, Q. Assessing the policy gaps for achieving China‘s climate targets in the Paris Agreement. Nat. Commun. 2019, 3, 1–9. [Google Scholar]
- International Carbon Action Partnership (ICAP). Emissions Trading Worldwide: Status Report 2018. Available online: https://icapcarbonaction.com/en/?option=com_attach&task=download&id=547Tang (accessed on 19 March 2019).
- Tang, C.F.; Tu, Y.J.; Dai, L.M.; Tan, X.Y. The Present Situation and Suggestions for CCER Forestry Carbon Sink Project Development. J. Sichuan For. Sci. Technol. 2017, 38, 115–119. [Google Scholar]
- Lewis, E. Intergovernmental Panel on Climate Change. Sustainaspeak 2018, 1, 153–154. [Google Scholar]
- Zhang, D. China’s forest expansion in the last three plus decades: Why and How? For. Policy Econ. 2019, 98, 75–81. [Google Scholar] [CrossRef]
- Piao, S.; Mohammat, A.; Fang, J.; Cai, Q.; Feng, J. NDVI-based increase in growth of temperate grasslands and its responses to climate changes in China. Glob. Environ. Chang. 2006, 16, 340–348. [Google Scholar] [CrossRef]
- Gong, C.; Bai, J.; Wang, J.; Zhou, Y.; Kang, T.; Wang, J.; Hu, C.; Guo, H.; Chen, P.; Xie, P.; et al. Carbon Storage Patterns of Caragana korshinskii in Areas of Reduced Environmental Moisture on the Loess Plateau, China. Sci. Rep. 2016, 6, 28883. [Google Scholar] [CrossRef] [Green Version]
- Tao, Y.; Zhang, Y.M. Evaluation of vegetation biomass carbon storage in deserts of Central Asia. Arid Land Geogr. 2013, 8, 151–162. [Google Scholar]
- Pooter, H.; Niklas, K.J.; Reich, P.B.; Oleksyn, J.; Poot, P.; Mommer, L. Biomass allocation toleaves, stems and roots: Meta-analyses of interspecific variation and environmental control. N. Phytol 2012, 193, 30–50. [Google Scholar] [CrossRef]
- Lin, B.; Ge, J. Valued forest carbon sinks: How much emissions abatement costs could be reduced in China. J. Clean. Prod. 2019, 224, 455–464. [Google Scholar] [CrossRef]
- Alexander, C.; Korstjens, A.H.; Hankinson, E.; Usher, G.; Harrison, N.; Nowak, M.G.; Abdullah, A.; Wich, S.A.; Hill, R.A. Locating emergent trees in a tropical rainforest using data from an Unmanned Aerial Vehicle (UAV). Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 86–90. [Google Scholar] [CrossRef]
- Puliti, S.; Ene, L.T.; Gobakken, T.; Næsset, E. Use of partial-coverage UAV data in sampling for large scale forest inventories. Remote Sens. Environ. 2017, 194, 115–126. [Google Scholar] [CrossRef]
- Purnamasayangsukasih, P.R.; Norizah, K.; Ismail, A.A.M.; Shamsudin, I. A review of uses of satellite imagery in monitoring mangrove forests. IOP Conf. Ser.: Earth Environ. Sci. 2016, 37, 12034. [Google Scholar] [CrossRef]
- Wallace, L.; Lucieer, A.; Malenovský, Z.; Turner, D.; Vopěnka, P. Assessment of Forest Structure Using Two UAV Techniques: A Comparison of Airborne Laser Scanning and Structure from Motion (SfM) Point Clouds. Forests 2016, 7, 62. [Google Scholar] [CrossRef] [Green Version]
- González-Jaramillo, V.; Fries, A.; Bendix, J. AGB Estimation in a Tropical Mountain Forest (TMF) by Means of RGB and Multispectral Images Using an Unmanned Aerial Vehicle (UAV). Remote Sens. 2019, 11, 1413. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Wang, Y.; Zhu, Y.; Li, H.; Jia, Z.; Liu, H. Effects of soil improvement of Caragana intermedia plantations in alpine sandy land on Tibet Plateau. Acta Ecol. Sin. 2014, 34, 123–128. [Google Scholar] [CrossRef]
- Guo, H.Y.; Gao, Y.B.; Ma, C.C.; Ren, A.Z.; Wu, J.B.; Wang, Y.H. Genetic diversity and genetic relationship of Caragana microphylla, Caragana davazamcii and Caragana korshinskii in Inner Mongolia Plateau. Acta Ecol. Sin. 2008, 28, 3729–3736. [Google Scholar]
- Rao, M.P.; Davi, N.K.; D’Arrigo, R.D.; Skees, J.; Nachin, B.; Leland, C.; Lyon, B.; Wang, S.-Y.; Byambasuren, O. Dzuds, droughts, and livestock mortality in Mongolia. Environ. Res. Lett. 2015, 10, 74012. [Google Scholar] [CrossRef]
- Zhang, H.; Fan, J.; Cao, W.; Harris, W.; Li, Y.; Chi, W.; Wang, S. Response of wind erosion dynamics to climate change and human activity in Inner Mongolia, China during 1990 to 2015. Sci. Total Environ. 2018, 639, 1038–1050. [Google Scholar] [CrossRef]
- Shang, C.W.; Wu, T.; Huang, G.L.; Wu, J.G. Week sustainability is not sustainable: Socioeconomic and environmental assessment of Inner Mongolia for the past three decades. Resour. Conserv. Recycl. 2019, 141, 243–252. [Google Scholar] [CrossRef]
- Zhou, W.; Yang, H.; Zhou, L.; Chen, Y.; Huang, L.; Ju, W. Dynamics of grassland carbon sequestration and its coupling relation with hydrothermal factor of Inner Mongolia. Ecol. Indic. 2018, 95, 1–11. [Google Scholar] [CrossRef]
- John, R.; Chen, J.; Giannico, V.; Park, H.; Xiao, J.; Shirkey, G.; Ouyang, Z.; Shao, C.; Lafortezza, R.; Qi, J. Grassland canopy cover and aboveground biomass in Mongolia and Inner Mongolia: Spatiotemporal estimates and controlling factors. Remote Sens. Environ. 2018, 213, 34–48. [Google Scholar] [CrossRef]
- Niu, C.Y.; Alamusa, D.; Zong, Q.; Luo, Y.M.; Oshid, T.; Sun, G.F.; Liu, Q. Allocation patterns of above- and below-ground biomass of Caragana microphylla in Horqin Sandy land, North China. Chin. J. Ecol. 2013, 32, 1980–1986. [Google Scholar]
- Dang, X.H.; Gao, Y.; Yu, Y.; Meng, Z.J.; Liu, Y.; Wang, S.; Wu, H.; Ding, Y.L.; Liu, B. The biomass estimation models for eight desert shrub species in northern edge of the Hobq Desert. J. Arid Land Resour. Environ. 2016, 30, 168–174. [Google Scholar]
- Wang, J.; Tang, J.; Guo, Y.F.; Gao, Y.H.; Yao, Y.F. Aboveground biomass estimation model of two shrubs to Aohan banner northern wind-sandy area in Inner Mongolia. Agric. Eng. 2015, 5, 44–47. [Google Scholar]
- Wei, W.; Zhao, J.; Qing, H.; Zeng, J. Study on the measurement method of carbon sink in Kubuqi Desert shrub—taking Caragana korshinskii and salix as example. J. Chifeng Univ. 2016, 32, 118–121. [Google Scholar]
- Dilek, K.; Serdar, S.; Nagihan, A.; Bekir, T.S. Automatic citrus tree extraction from UAV images and digital surface models using circular hough transform. Comput. Electron. Agric. 2018, 150, 289–301. [Google Scholar]
- Frey, J.; Kovach, K.; Stemmler, S.; Koch, B. UAV ptotogrammetry of forests as a vulnerable process. A sensitivity analysis for a structure from motion RGB-image pipeline. Remote Sens. 2018, 10, 912. [Google Scholar]
- Agisoft. Agisoft Photoscan UserManual, 2014. Agisoft LLC: St. Petersburg, Russia. Available online: http://www.agisoft.com/pdf/photoscan-pro_1_1_en.pdf (accessed on 15 June 2018).
- Torres-Sánchez, J.; De Castro, A.I.; Peña, J.M.; Jiménez-Brenes, F.M.; Arquero, O.; Lovera, M.; López-Granados, F. Mapping the 3D structure of almond trees using UAV acquired photogrammetric point clouds and object-based image analysis. Biosyst. Eng. 2018, 176, 172–184. [Google Scholar] [CrossRef]
- González-Jaramillo, V.; Fries, A.; Zeilinger, J.; Homeier, J.; Paladines-Benitez, J.; Bendix, J. Estimation of Above Ground Biomass in a Tropical Mountain Forest in Southern Ecuador Using Airborne LiDAR Data. Remote Sens. 2018, 10, 660. [Google Scholar] [CrossRef] [Green Version]
- Baltsavias, E.P. A comparison between photogrammetry and laser scanning. ISPRS J. Photogramm. Remote Sens. 1999, 54, 83–94. [Google Scholar] [CrossRef]
- Williams, F. Reasoning with Statistics: How to Read Quantitative Research; Harcourt Brace Jovanovich College Publishers: Fort Worth, TX, USA, 1992; pp. 12–16. [Google Scholar]
- UNFCCC. Calculation of the Number of Sample Plots for Measurements within A/R CDM Project Activities (Version 02.1.0). Available online: https://cdm.unfccc.int/methodologies/ARmethodologies/tools/ar-am-tool-03-v2.1.0.pdf (accessed on 09 October 2019).
- Weidner, U.; Förstner, W. Towards automatic building extraction from high-resolution digital elevation models. ISPRS J. Photogramm. Remote Sens. 1995, 50, 38–49. [Google Scholar] [CrossRef]
- Wimala, V.I.; Menno, S.; Elisabeth, A.; Hans, M. Monitoring height and greenness of non-woody floodplain vegetation with UAV time series. ISPRS J. Photogram. Remote Sens. 2018, 141, 112–123. [Google Scholar]
- Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 79–87. [Google Scholar] [CrossRef]
- Possoch, M.; Bieker, S.; Hoffmeister, D.; Bolten, A.; Schellberg, J.; Bareth, G. Multi-temporal crop surface models combined with the RGB vegetation index from UAV-based images for forage monitoring in grassland. ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B1, 991–998. [Google Scholar]
- Zarco-Tejada, P.J.; Diaz-Varela, R.; Angileri, V.; Loudjani, P. Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. Eur. J. Agron. 2014, 55, 89–99. [Google Scholar] [CrossRef]
Plot | Belts | Shrub Number | Average Crown (m) | Average Height (m) | Aboveground Carbon Stock (kg CO2e) |
---|---|---|---|---|---|
G1 | Belt-1 | 16 | 1.92 ± 0.74 | 1.93 ± 0.46 | 203.23 ± 4.46 |
Belt-2 | 21 | 1.71 ± 0.64 | 1.81 ± 0.59 | 241.31 ± 6.24 | |
Belt-3 | 25 | 1.70 ± 0.55 | 1.91 ± 0.49 | 294.49 ± 5.30 | |
G2 | Belt-4 | 26 | 1.49 ± 0.33 | 1.95 ± 0.24 | 270.88 ± 2.44 |
Belt-5 | 24 | 1.62 ± 0.39 | 1.81 ± 0.36 | 255.20 ± 3.28 | |
Belt-6 | 25 | 1.49 ± 0.46 | 1.88 ± 0.61 | 260.28 ± 4.37 | |
G3 | Belt-7 | 28 | 1.41 ± 0.41 | 1.72 ± 0.50 | 256.57 ± 3.92 |
Belt-8 | 16 | 1.59 ± 0.34 | 1.82 ± 0.34 | 174.34 ± 2.85 | |
Belt-9 | 28 | 1.41 ± 0.28 | 1.58 ± 0.50 | 239.22 ± 2.46 |
Plots | Pearson Correlation Coefficient | P | N |
---|---|---|---|
G1 | 0.99 | 0.00 | 897,064 |
G2 | 0.99 | 0.00 | 1,048,575 |
G3 | 0.99 | 0.00 | 1,154,800 |
Plot | Belts | Shrub Volume (m3) | Surveyed Carbon Stock (kg CO2e) | Predicted Carbon Stock (kg CO2e) | |
---|---|---|---|---|---|
Training data | G1 | Belt-1 | 42.44 ± 0.46 | 203.23 ± 4.46 | - |
Belt-2 | 54.03 ± 0.49 | 241.31 ± 6.24 | - | ||
Belt-3 | 62.04 ± 0.45 | 294.49 ± 5.30 | - | ||
G2 | Belt-4 | 60.89 ± 0.47 | 270.88 ± 2.44 | - | |
Belt-5 | 51.45 ± 0.44 | 255.20 ± 3.28 | - | ||
Belt-6 | 55.24 ± 0.43 | 260.28 ± 4.37 | - | ||
Validation data | G3 | Belt-7 | 57.41 ± 0.44 | 256.57 ± 3.92 | 266.72 |
Belt-8 | 36.78 ± 0.38 | 174.34 ± 2.85 | 182.56 | ||
Belt-9 | 43.36 ± 0.33 | 239.22 ± 2.46 | 209.39 |
Prediction Model | RMSE (kg CO2e) | R2 | (kg CO2e) | |
---|---|---|---|---|
Aboveground carbon stock | 18.79 | 0.74 | 17.26 | 0.74 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X. Quick Aboveground Carbon Stock Estimation of Densely Planted Shrubs by Using Point Cloud Derived from Unmanned Aerial Vehicle. Remote Sens. 2019, 11, 2914. https://doi.org/10.3390/rs11242914
Zhang X. Quick Aboveground Carbon Stock Estimation of Densely Planted Shrubs by Using Point Cloud Derived from Unmanned Aerial Vehicle. Remote Sensing. 2019; 11(24):2914. https://doi.org/10.3390/rs11242914
Chicago/Turabian StyleZhang, Xueyan. 2019. "Quick Aboveground Carbon Stock Estimation of Densely Planted Shrubs by Using Point Cloud Derived from Unmanned Aerial Vehicle" Remote Sensing 11, no. 24: 2914. https://doi.org/10.3390/rs11242914