Geolocation Accuracy Assessment of Himawari-8/AHI Imagery for Application to Terrestrial Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geographic Range
2.2. Himawari-8 AHI Datasets
2.3. Analysis
2.3.1. Relative Geolocation Evaluation
2.3.2. Stability Evaluation in Fixed-Site Monitoring
3. Results
3.1. Relative Geolocation Evaluation
3.2. Stability Evaluation in Fixed-Site Monitoring
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyasaka, T.; Murata, H.; Ohno, T.; et al. An Introduction to Himawari-8/9—Japan’s New-Generation Geostationary Meteorological Satellites. J. Meteorol. Soc. Jpn. Ser. II 2016, 94, 151–183. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Huete, R.A.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Miura, T.; Nagai, S.; Takeuchi, M.; Ichii, K.; Yoshioka, H. Improved Characterisation of Vegetation and Land Surface Seasonal Dynamics in Central Japan with Himawari-8 Hypertemporal Data. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Imai, T.; Yoshida, R. Algorithm Theoretical Basis for Himawari—8 Cloud Mask Product; Japan Meteorological Agency: Tokyo, Japan, 2016; p. 17.
- Yamamoto, Y.; Ishikawa, H. Thermal land surface emissivity for retrieving land surface temperature from Himawari-8. J. Meteorol. Soc. Jpn. 2018, 96B, 43–58. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Sun, K.; Chen, C.; Bai, T.; Park, T.; Wang, W.; Nemani, R.R.; Myneni, R.B. Generation and evaluation of LAI and FPAR products from Himawari-8 advanced Himawari imager (AHI) data. Remote Sens. 2019, 11, 1517. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, Y.; Ishikawa, H.; Oku, Y.; Hu, Z. An algorithm for land surface temperature retrieval using three thermal infrared bands of Himawari-8. J. Meteorol. Soc. Jpn. 2018, 96B, 59–76. [Google Scholar] [CrossRef] [Green Version]
- Damiani, A.; Irie, H.; Horio, T.; Takamura, T.; Khatri, P.; Takenaka, H.; Nagao, T.; Nakajima, T.Y.; Cordero, R.R. Evaluation of Himawari-8 surface downwelling solar radiation by ground-based measurements. Atmos. Meas. Tech. 2018, 11, 2501–2521. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, Y.; Ishikawa, H. Spatiotemporal variability characteristics of clear-sky land surface temperature in urban areas of Japan observed by Himawari-8. Sola 2018, 14, 179–184. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, Y.; Ishikawa, H. Influence of urban spatial configuration and sea breeze on land surface temperature on summer clear-sky days. Urban Clim. 2020, 31, 100578. [Google Scholar] [CrossRef]
- Jang, E.; Kang, Y.; Im, J.; Lee, D.W.; Yoon, J.; Kim, S.K. Detection and monitoring of forest fires using Himawari-8 geostationary satellite data in South Korea. Remote Sens. 2019, 11, 271. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Boles, S.; Frolking, S.; Salas, W.; Moore, B.; Li, C.; He, L.; Zhao, R. Observation of flooding and rice transplanting of paddy rice fields at the site to landscape scales in China using VEGETATION sensor data. Int. J. Remote Sens. 2002, 23, 3009–3022. [Google Scholar] [CrossRef]
- Xiao, X.; Boles, S.; Liu, J.; Zhuang, D.; Frolking, S.; Li, C.; Salas, W.; Moore, B. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sens. Environ. 2005, 95, 480–492. [Google Scholar] [CrossRef]
- Shekarforoush, H.F.; Zerubia, J.B.; Member, S.; Berthod, M. Extension of Phase Correlation to Subpixel Registration. IEEE Trans. Image Process. 2002, 11, 188–200. [Google Scholar]
- Skakun, S.; Roger, J.; Vermote, E.F.; Masek, J.G.; Justice, C.O. Automatic sub-pixel co-registration of Landsat-8 Operational Land Imager and Sentinel-2A Multi-Spectral Instrument images using phase correlation and machine learning based mapping Automatic sub-pixel co-registration of Landsat-8 Operational Land. Int. J. Digit. Earth 2017, 10, 1253–1269. [Google Scholar] [CrossRef] [PubMed]
- Meteorological Satellite Center of JMA, Himawari Navigation Monitoring Guide. Available online: https://www.data.jma.go.jp/mscweb/data/monitoring/HimawariNaviGuide.html (accessed on 15 March 2020).
- Meteorological Satellite Center of JMA, Himawari-8 Image Landmark Analysis Map. Available online: https://www.data.jma.go.jp/mscweb/data/monitoring/landmark/h8_landmark.html (accessed on 15 March 2020).
- Wang, W.; Li, S.; Hashimoto, H.; Takenaka, H.; Higuchi, A.; Kalluri, S.; Nemani, R. An Introduction to the Geostationary-NASA Earth Exchange (GeoNEX) Products: 1. Top-of-Atmosphere Reflectance and Brightness Temperature. Remote Sens. 2020, 12, 1267. [Google Scholar] [CrossRef] [Green Version]
- Matsuoka, M.; Honda, R.; Nonomura, A.; Moriya, H.; Akatsuka, S.; Yoshioka, H.; Takagi, M. A Method to Improve Geometric Accuracy of Himawari-8/AHI “Japan Area” Data. J. Jpn. Soc. Photogramm. Remote Sens. 2015, 54, 280–289. [Google Scholar]
- Vermote, F.E.; Saleous, Z.E.N.; Justice, O.C. Atmospheric correction of MODIS data in the visible to middle infrared: First results. Remote Sens. Environ. 2002, 83, 97–111. [Google Scholar] [CrossRef]
- Wolfe, R.E.; Nishihama, M.; Fleig, A.J.; Kuyper, J.A.; Roy, D.P.; Storey, J.C.; Patt, F.S. Achieving sub-pixel geolocation accuracy in support of MODIS land science. Remote Sens. Environ. 2002, 83, 31–49. [Google Scholar] [CrossRef]
- Wolfe, R.E.; Nishihama, M.; Lin, G.; Tewari, K.P.; Montano, E. MODIS and VIIRS Geometric Performance Comparison. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 5017–5020. [Google Scholar]
- Tan, B.; Dellomo, J.J.; Folley, C.N.; Grycewicz, T.J.; Houchin, S.; Isaacson, P.J.; Johnson, P.D.; Porter, B.C.; Reth, A.D.; Thiyanaratnam, P.; et al. GOES-R series image navigation and registration performance assessment tool set. J. Appl. Remote Sens. 2020, 14, 032405. [Google Scholar] [CrossRef]
- Jeong, J.; Han, H.; Park, Y. Geometric accuracy analysis of the Geostationary Ocean Color Imager (GOCI) Level 1B (L1B) product. Opt. Express 2020, 28, 7634. [Google Scholar] [CrossRef]
- Wolfe, R.E.; Nishihama, M. Trends in MODIS geolocation error analysis. In Proceedings of the International Society for Optical Engineering, San Diego, CA, USA, 2–4 August 2009; p. 7. [Google Scholar]
- Xu, W.; Wooster, M.J.; Kaneko, T.; He, J.; Zhang, T.; Fisher, D. Major advances in geostationary fire radiative power (FRP) retrieval over Asia and Australia stemming from use of Himarawi-8 AHI. Remote Sens. Environ. 2017, 193, 138–149. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Xu, H.; Zheng, F. Aerosol optical depth retrieval over East Asia using Himawari-8/AHI data. Remote Sens. 2018, 10, 137. [Google Scholar] [CrossRef] [Green Version]
- Lim, H.; Choi, M.; Kim, J.; Kasai, Y.; Chan, P.W. AHI/Himawari-8 Yonsei aerosol retrieval (YAER): Algorithm, validation and merged products. Remote Sens. 2018, 10, 699. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Li, Z.; Luo, N.; Shi, W.; Zhao, W.; Yang, X.; Jin, J. A minimum albedo aerosol retrieval method for the new-generation geostationary meteorological satellite Himawari-8. Atmos. Res. 2018, 207, 14–27. [Google Scholar] [CrossRef]
- Ge, B.; Li, Z.; Liu, L.; Yang, L.; Chen, X.; Hou, W.; Zhang, Y.; Li, D.; Li, L.; Qie, L. A Dark Target Method for Himawari-8/AHI Aerosol Retrieval: Application and Validation. IEEE Trans. Geosci. Remote Sens. 2019, 57, 381–394. [Google Scholar] [CrossRef]
- Yan, D.; Zhang, X.; Nagai, S.; Yu, Y.; Akitsu, T.; Nasahara, K.N.; Ide, R.; Maeda, T. Evaluating land surface phenology from the Advanced Himawari Imager using observations from MODIS and the Phenological Eyes Network. Int. J. Appl. Earth Obs. Geoinf. 2019, 79, 71–83. [Google Scholar] [CrossRef]
- Release note of “HIMAWARI 8” gridded data for full-disk (FD) observation mode. Available online: http://www.cr.chiba-u.jp/databases/GEO/H8_9/FD/index.html (accessed on 15 March 2020).
- AsiaFlux Home Page. Available online: http://asiaflux.net/?page_id=22 (accessed on 15 March 2020).
- OzFlux Home Page. Available online: http://www.ozflux.org.au/monitoringsites/index.html (accessed on 15 March 2020).
- Meteorological Satellite Center of JMA, Himawari-8 Irregular Event Logs. Available online: https://www.data.jma.go.jp/mscweb/en/oper/event_H8.html (accessed on 15 March 2020).
- Nakayama, R.; Okuyama, A. Chapter 3: Image Navigation and Calibration. In Meteorological Research Note; Okamoto, K., Bessho, K., Yoshizaki, Y., Murata, H., Eds.; Japan Meteorological Agency: Tokyo, Japan, 2018; Volume 238, pp. 23–37. [Google Scholar]
- Sansom, J.; Thomson, P.; Carey-Smith, T. Stochastic seasonality of rainfall in New Zealand. J. Geophys. Res. Atmos. 2013, 118, 3944–3955. [Google Scholar] [CrossRef]
- Chen, X.; Shang, S.; Lee, Z.; Qi, L.; Yan, J.; Li, Y. High-frequency observation of floating algae from AHI on Himawari-8. Remote Sens. Environ. 2019, 227, 151–161. [Google Scholar] [CrossRef]
- Otsuka, M.; Seko, H. Characteristics of Himawari-8 Rapid Scan Atmospheric Motion Vectors Utilized in Mesoscale Data Assimilation. J. Meteorol. Soc. Jpn. 2018, 96B, 111–131. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.H.; Kim, H.M. Effect of assimilating Himawari-8 atmospheric motion vectors on forecast errors over East Asia. J. Atmos. Ocean. Technol. 2018, 35, 1737–1752. [Google Scholar] [CrossRef]
Flux Site Code | Latitude (°N) | Longitude (°E) | IGBP Land Cover |
---|---|---|---|
SKT | 48.35 | 108.65 | Deciduous needleleaf forest |
GCK | 37.75 | 127.16 | Evergreen needleleaf forest |
HBG | 37.48 | 101.20 | Grasslands |
YCS | 36.83 | 116.57 | Croplands |
TGF | 36.11 | 140.10 | Grasslands |
FHK | 35.44 | 138.76 | Deciduous needleleaf forest |
HPK | 34.48 | 126.48 | Croplands |
CM3 | 31.52 | 121.96 | Permanent Wetlands |
IRI | 14.14 | 121.27 | Croplands |
-2.35 | 114.04 | Evergreen broadleaf forest | |
AU-Sam | -27.39 | 152.88 | Woody Savannas |
AU-Gin | -31.38 | 115.71 | Woody Savannas |
AU-Ync | -34.99 | 146.29 | Grasslands |
AU-APL | -36.86 | 147.32 | Grasslands |
NZ-Bfm | -43.59 | 171.93 | Grasslands |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamamoto, Y.; Ichii, K.; Higuchi, A.; Takenaka, H. Geolocation Accuracy Assessment of Himawari-8/AHI Imagery for Application to Terrestrial Monitoring. Remote Sens. 2020, 12, 1372. https://doi.org/10.3390/rs12091372
Yamamoto Y, Ichii K, Higuchi A, Takenaka H. Geolocation Accuracy Assessment of Himawari-8/AHI Imagery for Application to Terrestrial Monitoring. Remote Sensing. 2020; 12(9):1372. https://doi.org/10.3390/rs12091372
Chicago/Turabian StyleYamamoto, Yuhei, Kazuhito Ichii, Atsushi Higuchi, and Hideaki Takenaka. 2020. "Geolocation Accuracy Assessment of Himawari-8/AHI Imagery for Application to Terrestrial Monitoring" Remote Sensing 12, no. 9: 1372. https://doi.org/10.3390/rs12091372