Small-Scale Ionospheric Irregularities of Auroral Origin at Mid-latitudes during the 22 June 2015 Magnetic Storm and Their Effect on GPS Positioning
Abstract
:1. Introduction
2. Experimental Facilities and Data
3. Results
3.1. 22 June 2015 Geomagnetic Storm
3.2. Spread-F and Scintillations
3.3. Precise Point Positioning
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yeh, K.C.; Liu, C.-H. Radio wave scintillations in the ionosphere. Proc. IEEE 1982, 70, 324–360. [Google Scholar] [CrossRef]
- Kintner, P.; Ledvina, B.M.; De Paula, E.R. GPS and ionospheric scintillations. Space Weather 2007, 5. [Google Scholar] [CrossRef]
- Aarons, J. Global morphology of ionospheric scintillations. Proc. IEEE 1982, 70, 360–378. [Google Scholar] [CrossRef]
- Hysell, D. An overview and synthesis of plasma irregularities in equatorial spread F. J. Atmos. Sol. Terr. Phys. 2000, 62, 1037–1056. [Google Scholar] [CrossRef]
- Hlubek, N.; Berdermann, J.; Wilken, V.; Gewies, S.; Jakowski, N.; Wassaie, M.; Damtie, B. Scintillations of the GPS, GLONASS, and Galileo signals at equatorial latitude. J. Space Weather Space Clim. 2014, 4. [Google Scholar] [CrossRef] [Green Version]
- Jiao, Y.; Morton, Y.; Taylor, S. Comparative studies of high-latitude and equatorial ionospheric scintillation characteristics of GPS signals. In Proceedings of the Position, Location and Navigation Symposium (PLANS 2014), Monterey, CA, USA, 5–8 May 2014; pp. 37–42. [Google Scholar] [CrossRef]
- Jiao, Y.; Morton, Y.J. Comparison of the effect of high-latitude and equatorial ionospheric scintillation on GPS signals during the maximum of solar cycle 24. Radio Sci. 2015, 50, 886–903. [Google Scholar] [CrossRef]
- Prikryl, P.; Jayachandran, P.T.; Chadwick, R.; Kelly, T.D. Climatology of GPS phase scintillation at northern high latitudes for the period from 2008 to 2013. Ann. Geophys. 2015, 33, 531–545. [Google Scholar] [CrossRef] [Green Version]
- Booker, H.G.; Wells, H.W. Scattering of radio waves by theF-region of the ionosphere. J. Geophys. Res. Space Phys. 1938, 43, 249. [Google Scholar] [CrossRef]
- Basu, S.; Kelley, M.C. A review of recent observations of equatorial scintillations and their relationship to current theories of Fregion irregularity generation. Radio Sci. 1979, 14, 471–485. [Google Scholar] [CrossRef]
- Woodman, R.F. Spread F—An old equatorial aeronomy problem finally resolved? Ann. Geophys. 2009, 27, 1915–1934. [Google Scholar] [CrossRef]
- Skone, S.H. The impact of magnetic storms on GPS receiver performance. J. Geod. 2001, 75, 457–468. [Google Scholar] [CrossRef]
- Afraimovich, E.; Astafyeva, E.; Demyanov, V.; Gamayunov, I. Mid-latitude amplitude scintillation of GPS signals and GPS performance slips. Adv. Space Res. 2009, 43, 964–972. [Google Scholar] [CrossRef]
- Astafyeva, E.; Yasyukevich, Y.; Maksikov, A.; Zhivetiev, I.V. Geomagnetic storms, super-storms, and their impacts on GPS-based navigation systems. Space Weather 2014, 12, 508–525. [Google Scholar] [CrossRef]
- Fridman, S. The formation of small-scale irregularities as a result of ionospheric plasma mixing by large-scale drifts. Planet. Space Sci. 1990, 38, 961–972. [Google Scholar] [CrossRef]
- Astafyeva, E.; Afraimovich, E.; Voeykov, S. Generation of secondary waves due to intensive large-scale AGW traveling. Adv. Space Res. 2008, 41, 1459–1462. [Google Scholar] [CrossRef]
- Bowman, G. A relationship between polar magnetic substorms, ionospheric height rises and the occurrence of spread-F. J. Atmos. Terr. Phys. 1978, 40, 713–722. [Google Scholar] [CrossRef]
- Ma, G.; Maruyama, T. A super bubble detected by dense GPS network at east Asian longitudes. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Demyanov, V.; Yasyukevich, Y.; Ishin, A.; Astafyeva, E.I. Ionospheric super-bubble effects on the GPS positioning relative to the orientation of signal path and geomagnetic field direction. GPS Solut. 2011, 16, 181–189. [Google Scholar] [CrossRef]
- Mevius, M.; Tol, S.; Pandey, V.N.; Vedantham, H.K.; Brentjens, M.A.; Bruyn, A.G.; Abdalla, F.; Asad, K.M.B.; Bregman, J.D.; Brouw, W.N.; et al. Probing ionospheric structures using the LOFAR radio telescope. Radio Sci. 2016, 51, 927–941. [Google Scholar] [CrossRef] [Green Version]
- Vasilyev, R.V.; Kushnarev, D.; Lebedev, V.; Medvedev, A.; Nevidimov, N.; Ratovsky, K. Perspectives of usage of Irkutsk incoherent scatter radar (IISR) as an imaging riometer and radio-heliograph. J. Atmos. Sol. Terr. Phys. 2013, 105, 273–280. [Google Scholar] [CrossRef]
- Reiff, P.; Daou, A.G.; Sazykin, S.; Nakamura, R.; Hairston, M.R.; Coffey, V.; Chandler, M.O.; Anderson, B.J.; Russell, C.T.; Welling, D.; et al. Multispacecraft observations and modeling of the 22/23 June 2015 geomagnetic storm. Geophys. Res. Lett. 2016, 43, 7311–7318. [Google Scholar] [CrossRef] [Green Version]
- Astafyeva, E.; Zakharenkova, I.; Alken, P. Prompt penetration electric fields and the extreme topside ionospheric response to the 22–23 June 2015 geomagnetic storm as seen by the Swarm constellation. Earth Planets Space 2016, 68, 1309. [Google Scholar] [CrossRef]
- Astafyeva, E.; Zakharenkova, I.; Huba, J.D.; Doornbos, E.; Ijssel, J.V.D. Global Ionospheric and Thermospheric Effects of the June 2015 Geomagnetic Disturbances: Multi-Instrumental Observations and Modeling. J. Geophys. Res. Space Phys. 2017, 122, 11716–11742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Astafyeva, E.; Zakharenkova, I.; Hozumi, K.; Alken, P.; Coïsson, P.; Hairston, M.R.; Coley, W.R. Study of the Equatorial and Low-Latitude Electrodynamic and Ionospheric Disturbances During the 22–23 June 2015 Geomagnetic Storm Using Ground-Based and Spaceborne Techniques. J. Geophys. Res. Space Phys. 2018, 123, 2424–2440. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Sripathi, S. Ionospheric Response to 22–23 June 2015 Storm as Investigated Using Ground-Based Ionosondes and GPS Receivers Over India. J. Geophys. Res. Space Phys. 2017, 122, 645. [Google Scholar] [CrossRef]
- Piersanti, M.; Alberti, T.; Bemporad, A.; Berrilli, F.; Bruno, R.; Capparelli, V.; Carbone, V.; Cesaroni, C.; Consolini, G.; Cristaldi, A.; et al. Comprehensive Analysis of the Geoeffective Solar Event of 21 June 2015: Effects on the Magnetosphere, Plasmasphere, and Ionosphere Systems. Sol. Phys. 2017, 292, 5–169. [Google Scholar] [CrossRef]
- Gherm, V.E.; Zernov, N.; Strangeways, H. Effects of diffraction by ionospheric electron density irregularities on the range error in GNSS dual-frequency positioning and phase decorrelation. Radio Sci. 2011, 46. [Google Scholar] [CrossRef]
- Andrew, O.-O.A.; Doherty, P.H.; Carrano, C.S.; Valladares, C.E.; Groves, K.M. Impacts of ionospheric scintillations on GPS receivers intended for equatorial aviation applications. Radio Sci. 2012, 47. [Google Scholar] [CrossRef]
- Luo, X.; Gu, S.; Lou, Y.; Xiong, C.; Chen, B.; Jin, X. Assessing the Performance of GPS Precise Point Positioning Under Different Geomagnetic Storm Conditions during Solar Cycle 24. Sensors 2018, 18, 1784. [Google Scholar] [CrossRef] [Green Version]
- Fremouw, E.J.; Bates, H.F. Worldwide Behavior of Average VHF-UHF Scintillation. Radio Sci. 1971, 6, 863–869. [Google Scholar] [CrossRef]
- Fremouw, E.J.; Leadabrand, R.L.; Livingston, R.C.; Cousins, M.D.; Rino, C.L.; Fair, B.C.; Lang, R.A. Early results from the DNA Wideband satellite experiment—Complex-signal scintillation. Radio Sci. 1978, 13, 167–187. [Google Scholar] [CrossRef]
- Berkner, L.V.; Wells, H.W. F-region ionosphere-investigations at low latitudes. J. Geophys. Res. Space Phys. 1934, 39, 215. [Google Scholar] [CrossRef]
- Reinisch, B.; Haines, D.M.; Bibl, K.; Galkin, I.; Kitrosser, D.F.; Sales, G.S.; Scali, J.L.; Huang, X. Ionospheric sounding in support of over-the-horizon radar. Radio Sci. 1997, 32, 1681–1694. [Google Scholar] [CrossRef]
- Potekhin, A.P.; Medvedev, A.; Zavorin, A.V.; Kushnarev, D.S.; Lebedev, V.P.; Shpynev, B.G. Development of diagnostic capabilities of the Irkutsk incoherent scattering radar. Cosmo Res. 2008, 46, 347–353. [Google Scholar] [CrossRef]
- Shanmugam, S.; Jones, J.; Macaulay, A.; Van Dierendonck, A. Evolution to modernized GNSS ionoshperic scintillation and TEC monitoring. In Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium; Institute of Electrical and Electronics Engineers (IEEE), Myrtle Beach, South Carolina, USA, 23–26 April 2012; pp. 265–273. [Google Scholar]
- Spogli, L.; Alfonsi, L.; De Franceschi, G.; Romano, V.; Aquino, M.H.O.; Dodson, A. Climatology of GPS ionospheric scintillations over high and mid-latitude European regions. Ann. Geophys. 2009, 27, 3429–3437. [Google Scholar] [CrossRef]
- Hofmann-Wellenhof, B.; Lichtenegger, H.; Collins, J. Global Positioning System; Springer Science and Business Media LLC: Berlin, Germany, 2001. [Google Scholar]
- Jin, S.; Feng, G.; Gleason, S. Remote sensing using GNSS signals: Current status and future directions. Adv. Space Res. 2011, 47, 1645–1653. [Google Scholar] [CrossRef]
- Afraimovich, E.L.; Astafyeva, E.I.; Demyanov, V.; Edemskiy, I.K.; Gavrilyuk, N.S.; Ishin, A.; Kosogorov, E.A.; Leonovich, L.A.; Lesyuta, O.S.; Palamartchouk, K.; et al. A review of GPS/GLONASS studies of the ionospheric response to natural and anthropogenic processes and phenomena. J. Space Weather Space Clim. 2013, 3, A27. [Google Scholar] [CrossRef] [Green Version]
- Dow, J.M.; Neilan, R.E.; Rizos, C. The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J. Geod. 2009, 83, 191–198. [Google Scholar] [CrossRef]
- Яcюкeвич, Ю.; Yasyukevich, Y.; Пeрeвaлoвa, Н.; Perevalova, N.; Becнин, A.; Vesnin, A. SibNet—Siberian Global Navigation Satellite System Network: Current state. Sol. Terr. Phys. 2018, 4, 63–72. [Google Scholar] [CrossRef]
- Jayachandran, P.T.; Langley, R.B.; MacDougall, J.W.; Mushini, S.C.; Pokhotelov, D.; Hamza, A.M.; Mann, I.R.; Milling, D.K.; Kale, Z.C.; Chadwick, R.; et al. Canadian High Arctic Ionospheric Network (CHAIN). Radio Sci. 2009, 44. [Google Scholar] [CrossRef]
- Bruyninx, C.; Habrich, H.; Söhne, W.; Kenyeres, A.; Stangl, G.; Völksen, C. Enhancement of the EUREF Permanent Network Services and Products. In International Association of Geodesy Symposia; Springer Science and Business Media LLC: Berlin, Germany, 2011; Volume 136, pp. 27–34. [Google Scholar]
- Maletckii, B.; Yasyukevich, Y.; Vesnin, A. Wave Signatures in Total Electron Content Variations: Filtering Problems. Remote Sens. 2020, 12, 1340. [Google Scholar] [CrossRef] [Green Version]
- Schaer, S. Mapping and Predicting the Earth’s Ionosphere Using the Global Positioning System. Ph.D. Dissertation, Astronomical Institute, University of Berne, Berne, Switzerland, 25 March 1999. [Google Scholar]
- Yasyukevich, Y.; Kiselev, A.V.; Zhivetiev, I.V.; Edemskiy, I.K.; Syrovatskii, S.V.; Maletckii, B.M.; Vesnin, A.M. SIMuRG: System for Ionosphere Monitoring and Research from GNSS. GPS Solut. 2020, 24, 1–12. [Google Scholar] [CrossRef]
- Zhou, F.; Dong, D.; Li, W.; Jiang, X.; Wickert, J.; Schuh, H. GAMP: An open-source software of multi-GNSS precise point positioning using undifferenced and uncombined observations. GPS Solut. 2018, 22, 33. [Google Scholar] [CrossRef]
- Yasyukevich, Y.; Astafyeva, E.; Padokhin, A.; Ivanova, V.A.; Syrovatskii, S.; Podlesnyi, A. The 6 September 2017 X-Class Solar Flares and Their Impacts on the Ionosphere, GNSS, and HF Radio Wave Propagation. Space Weather 2018, 16, 1013–1027. [Google Scholar] [CrossRef]
- Mathews, G.J.; Towheed, S.S. NSSDC OMNIWeb: The first space physics WWW-based data browsing and retrieval system. Comput. Netw. ISDN Syst. 1995, 27, 801–808. [Google Scholar] [CrossRef]
- Thebault, E.; Finlay, C.C.; Beggan, C.D.; Alken, P.; Aubert, J.; Barrois, O.; Bertrand, F.; Bondar, T.; Boness, A.; Brocco, L.; et al. International Geomagnetic Reference Field: The 12th generation. Earth Planets Space 2015, 67, 68. [Google Scholar] [CrossRef]
- Vasilyev, R.V.; Globa, M.; Kushnarev, D.; Medvedev, A.; Ratovsky, K.; Globa, M. Spectral characteristics of ionospheric scintillations of VHF radiosignal near magnetic zenith. J. Atmos. Sol. Terr. Phys. 2017, 160, 48–55. [Google Scholar] [CrossRef]
- Crane, R.K. Spectra of ionospheric scintillation. J. Geophys. Res. Space Phys. 1976, 81, 2041–2050. [Google Scholar] [CrossRef]
- Kelley, M.C.; Vickrey, J.F.; Carlson, C.W.; Torbert, R. On the origin and spatial extent of high-latitudeFregion irregularities. J. Geophys. Res. Space Phys. 1982, 87, 4469. [Google Scholar] [CrossRef]
- Kelley, M.C. 10 Instabilities and Structure in the High-Latitude Ionosphere. Int. Geophys. 2009, 96, 469–544. [Google Scholar] [CrossRef]
- Kagan, L.M.; Myasnikov, E.N.; Kosolapenko, V.I.; Kryazhev, V.A.; Cheremnyj, V.A.; Persson, M.A. F-layer irregularities’ formation at auroral latitudes: Radio wave scintillation and EISCAT observations. J. Atmos. Terr. Phys. 1995, 57, 917–928. [Google Scholar] [CrossRef]
- Bowman, G.G. Periodicities and spread-F associated with largescale travelling ionospheric disturbances. Indian J. Radio Space Phys. 1996, 25, 93–100. Available online: http://nopr.niscair.res.in/handle/123456789/35645 (accessed on 16 April 2020).
- Bowman, G.G.; Mortimer, I.K. Some characteristics of large-scale travelling ionospheric disturbances and a relationship between the F2 layer height rises of these disturbances and equatorial pre-sunrise events. Ann. Geophys. 2010, 28, 1419–1430. [Google Scholar] [CrossRef] [Green Version]
- Farley, D.T.; Balsey, B.B.; Woodman, R.F.; McClure, J.P. Equatorial spreadF: Implications of VHF radar observations. J. Geophys. Res. Space Phys. 1970, 75, 7199–7216. [Google Scholar] [CrossRef]
- Hysell, D.; Larsen, M.; Fritts, D.; Laughman, B.; Sulzer, M. Major upwelling and overturning in the mid-latitude F region ionosphere. Nat. Commun. 2018, 9, 3326. [Google Scholar] [CrossRef]
- Newell, P.T.; Sotirelis, T.; Wing, S. Diffuse, monoenergetic, and broadband aurora: The global precipitation budget. J. Geophys. Res. Space Phys. 2009, 114. [Google Scholar] [CrossRef]
- Chisham, G.; Lester, M.; Milan, S.E.; Freeman, M.P.; Bristow, W.A.; Grocott, A.; McWilliams, K.A.; Ruohoniemi, J.M.; Yeoman, T.K.; Dyson, P.L.; et al. A decade of the Super Dual Auroral Radar Network (SuperDARN): Scientific achievements, new techniques and future directions. Surv. Geophys. 2007, 28, 33–109. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yasyukevich, Y.; Vasilyev, R.; Ratovsky, K.; Setov, A.; Globa, M.; Syrovatskii, S.; Yasyukevich, A.; Kiselev, A.; Vesnin, A. Small-Scale Ionospheric Irregularities of Auroral Origin at Mid-latitudes during the 22 June 2015 Magnetic Storm and Their Effect on GPS Positioning. Remote Sens. 2020, 12, 1579. https://doi.org/10.3390/rs12101579
Yasyukevich Y, Vasilyev R, Ratovsky K, Setov A, Globa M, Syrovatskii S, Yasyukevich A, Kiselev A, Vesnin A. Small-Scale Ionospheric Irregularities of Auroral Origin at Mid-latitudes during the 22 June 2015 Magnetic Storm and Their Effect on GPS Positioning. Remote Sensing. 2020; 12(10):1579. https://doi.org/10.3390/rs12101579
Chicago/Turabian StyleYasyukevich, Yury, Roman Vasilyev, Konstantin Ratovsky, Artem Setov, Maria Globa, Semen Syrovatskii, Anna Yasyukevich, Alexander Kiselev, and Artem Vesnin. 2020. "Small-Scale Ionospheric Irregularities of Auroral Origin at Mid-latitudes during the 22 June 2015 Magnetic Storm and Their Effect on GPS Positioning" Remote Sensing 12, no. 10: 1579. https://doi.org/10.3390/rs12101579