Using the Geodetector Method to Characterize the Spatiotemporal Dynamics of Vegetation and Its Interaction with Environmental Factors in the Qinba Mountains, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Preprocessing
2.2.1. MODIS NDVI
2.2.2. Driving Factors
2.3. Methodology
2.3.1. Spatial Autocorrelation Analysis
2.3.2. Geodetector
3. Results
3.1. Spatiotemporal Variation of the NDVI in the QBM
3.1.1. Spatial Pattern of the NDVI in the QBM
3.1.2. Temporal Dynamics of NDVI
3.2. Spatial Autocorrelation of NDVI in the QBM
3.2.1. Global Autocorrelation
3.2.2. Local Autocorrelation
3.3. Identification of Driving Forces
3.3.1. Influence of Environmental Factors
3.3.2. Interaction between Environmental Factors
3.3.3. Optimal Types/Ranges
3.3.4. Significant Differences between Environmental Factors
4. Discussion
4.1. Vegetation Variation Characteristics in the QBM
4.2. Key Environmental Drivers of NDVI Change
4.3. Implications and Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, Y.; Guan, Q.; Sun, Y.; Zhang, J.; Yang, L.; Yang, E.; Li, H.; Du, Q. Three-dimensional dynamic characteristics of vegetation and its response to climatic factors in the Qilian Mountains. Catena 2022, 208, 105694. [Google Scholar] [CrossRef]
- Wang, W.; Ma, X.; Moazzam Nizami, S.; Tian, C.; Guo, F. Anthropogenic and Biophysical Factors Associated with Vegetation Restoration in Changting, China. Forests 2018, 9, 306. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Mao, Z.; Yang, L.; Liu, Z.; Han, J.; Wanag, H.; He, W. Impacts of climate change and afforestation on vegetation dynamic in the Mu Us Desert, China. Ecol. Indic. 2021, 129, 108020. [Google Scholar] [CrossRef]
- Kalisa, W.; Igbawua, T.; Henchiri, M.; Ali, S.; Zhang, S.; Bai, Y.; Zhang, J. Assessment of climate impact on vegetation dynamics over East Africa from 1982 to 2015. Sci. Rep. 2019, 9, 16865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alkama, R.; Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 2016, 351, 600–604. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Zheng, X.; Ma, L.; Wang, H.; Huang, Q.; Leng, G.; Meng, E.; Guo, Y. Quantitative contribution of climate change and human activities to vegetation cover variations based on GA-SVM model. J. Hydrol. 2020, 584, 124687. [Google Scholar] [CrossRef]
- Jiang, L.; Bao, A.; Guo, H.; Ndayisaba, F. Vegetation dynamics and responses to climate change and human activities in Central Asia. Sci. Total Environ. 2017, 599, 967–980. [Google Scholar] [CrossRef]
- Liu, S.; Huang, S.; Xie, Y.; Wang, H.; Huang, Q.; Leng, G.; Li, P.; Wang, L. Spatial-temporal changes in vegetation cover in a typical semi-humid and semi-arid region in China: Changing patterns, causes and implications. Ecol. Indic. 2019, 98, 462–475. [Google Scholar] [CrossRef]
- Li, X.; Du, L.; Li, X.; Yao, P.; Luo, Z.; Wu, Z. Effects of Human Activities on Urban Vegetation: Explorative Analysis of Spatial Characteristics and Potential Impact Factors. Remote Sens. 2022, 14, 2999. [Google Scholar] [CrossRef]
- Wang, Z.; Bai, T.; Xu, D.; Kang, J.; Shi, J.; Fang, H.; Nie, C.; Zhang, Z.; Yan, P.; Wang, D. Temporal and Spatial Changes in Vegetation Ecological Quality and Driving Mechanism in Kökyar Project Area from 2000 to 2021. Sustainability 2022, 14, 7668. [Google Scholar] [CrossRef]
- Peng, W.; Wang, G.; Zhou, J.; Xu, X.; Luo, H.; Zhao, J.; Yang, C. Dynamic monitoring of fractional vegetation cover along Minjiang River from Wenchuan County to Dujiangyan City using multi-temporal landsat 5 and 8 images. Acta Ecol. Sin. 2016, 36, 1975–1988. [Google Scholar]
- Chu, H.; Venevsky, S.; Wu, C.; Wang, M. NDVI-based vegetation dynamics and its response to climate changes at Amur-Heilongjiang River Basin from 1982 to 2015. Sci. Total Environ. 2019, 650, 2051–2062. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Fu, M.; Feng, D.; Sun, Y.; Zhai, G. Spatiotemporal changes in vegetation cover and its influencing factors in the loess Plateau of China based on the geographically weighted regression model. Forests 2021, 12, 673. [Google Scholar] [CrossRef]
- Chen, C.; Zhu, L.; Tian, L.; LI, X. Spatial-temporal changes in vegetation characteristics and climate in the Qinling-Daba Mountains. Acta Ecol. Sin. 2019, 39, 3257–3266. [Google Scholar]
- Liu, C.; Li, W.; Wang, W.; Zhou, H.; Liang, T.; Hou, F.; Xu, J.; Xue, P. Quantitative spatial analysis of vegetation dynamics and potential driving factors in a typical alpine region on the northeastern Tibetan Plateau using the Google Earth Engine. Catena 2021, 206, 105500. [Google Scholar] [CrossRef]
- Wang, J.; Ouyang, J.; Zhang, M. Spatial distribution characteristics of soil and vegetation in a reclaimed area in an opencast coalmine. Catena 2020, 195, 104773. [Google Scholar] [CrossRef]
- Fan, Z.; Deng, C.; Fan, Y.; Zhang, P.; Lu, H. Spatial-temporal pattern and evolution trend of the cultivated land use eco-efficiency in the National Pilot Zone for ecological conservation in China. Int. J. Environ. Res. Public Health 2021, 19, 111. [Google Scholar] [CrossRef]
- Song, L.; Li, M.; Xu, H.; Guo, Y.; Wang, Z.; Li, Y.; Wu, X.; Feng, L.; Chen, J.; Lu, X. Spatiotemporal variation and driving factors of vegetation net primary productivity in a typical karst area in China from 2000 to 2010. Ecol. Indic. 2021, 132, 108280. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, W.; Wang, S.; Zhang, B.; Xu, Q. Spatial–Temporal Vegetation Dynamics and Their Relationships with Climatic, Anthropogenic, and Hydrological Factors in the Amur River Basin. Remote Sens. 2021, 13, 684. [Google Scholar] [CrossRef]
- Zhao, A.; Zhang, A.; Lu, C.; Wang, D.; Wang, H.; Liu, H. Spatiotemporal variation of vegetation coverage before and after implementation of Grain for Green Program in Loess Plateau, China. Ecol. Eng. 2017, 104, 13–22. [Google Scholar] [CrossRef]
- Guan, Q.; Yang, L.; Guan, W.; Wang, F.; Liu, Z.; Xu, C. Assessing vegetation response to climatic variations and human activities: Spatiotemporal NDVI variations in the Hexi Corridor and surrounding areas from 2000 to 2010. Theor. Appl. Climatol. 2019, 135, 1179–1193. [Google Scholar] [CrossRef]
- Zhu, Z.; Piao, S.; Myneni, R.B.; Huang, M.; Zeng, Z.; Canadell, J.G.; Ciais, P.; Sitch, S.; Friedlingstein, P.; Arneth, A. Greening of the Earth and its drivers. Nat. Clim. Change 2016, 6, 791–795. [Google Scholar] [CrossRef]
- Pei, Z.; Fang, S.; Yang, W.; Wang, L.; Wu, M.; Zhang, Q.; Han, W.; Khoi, D.N. The relationship between NDVI and climate factors at different monthly time scales: A case study of grasslands in inner Mongolia, China (1982–2015). Sustainability 2019, 11, 7243. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Xu, G.; Li, P.; Li, Z.; Wang, Y.; Wang, B.; Jia, L.; Cheng, Y.; Zhang, J.; Zhuang, S. Vegetation change and its relationship with climate factors and elevation on the Tibetan plateau. Int. J. Environ. Res. Public Health 2019, 16, 4709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nie, T.; Dong, G.; Jiang, X.; Lei, Y. Spatio-temporal changes and driving forces of vegetation coverage on the loess plateau of Northern Shaanxi. Remote Sens. 2021, 13, 613. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Zhang, B. Ten major scientific issues concerning the study of China’s north-south transitional zone. Prog. Geogr. 2019, 38, 305–311. [Google Scholar]
- Li, X.; Ma, B.; Lu, C.; Yang, H.; Sun, M. Spatial Pattern and Development of Protected Areas in the North-south Transitional Zone of China. Chin. Geogr. Sci. 2021, 31, 149–166. [Google Scholar] [CrossRef]
- Sun, H.; Bai, H.; Zhang, Q.; Luo, X.; Zhang, S. SPOT VEGETATION-based analysis on vegetation change and its responses to temperature in the southern region of Qinling Mountains during the last decades. Acta Sci. Circumstantiae 2010, 30, 649–654. [Google Scholar]
- Cui, X.; Bai, H.; Shang, X. The vegetation dynamic in Qinling area based on MODIS NDVI. J. Northwest Univ. Nat. Sci. Ed. 2012, 42, 1021–1026. [Google Scholar]
- Zhang, Y.; He, Y.; Li, Y.; Jia, L. Spatiotemporal variation and driving forces of NDVI from 1982 to 2015 in the Qinba Mountains, China. Environ. Sci. Pollut. Res. 2022, 29, 52277–52288. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, S.; Zhu, W.; Ren, H.; Zhang, L.; Zhu, L. Spatiotemporal variations of extreme precipitation and its potential driving factors in China’s North-South Transition Zone during 1960–2017. Atmos. Res. 2021, 252, 105429. [Google Scholar] [CrossRef]
- Liu, Z.; Mcvicar, T.R.; Niel, V.T.G.; Yang, Q.; Li, R. Introduction of the professional interpolation software for meteorology data-ANUSPLIN. Meteor. Mon. 2008, 34, 92–100. [Google Scholar]
- Hong, Y. Modeling spatial distribution of climate in China using thin plate smoothing spline interpolation. Sci. Geogr. Sin. 2004, 24, 163–169. [Google Scholar]
- He, Y.; Fan, G.; Zhang, X.; Liu, M.; Gao, D. Variation of vegetation NDVI and its response to climate change in Zhejiang Province. Acta Ecol. Sin. 2012, 32, 4352–4362. [Google Scholar] [CrossRef]
- Moran, P.A.P. Notes on continuous stochastic phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef]
- Anselin, L. Local indicator of spatial association-LISA. Geogr. Anal. 1995, 27, 91–115. [Google Scholar] [CrossRef]
- Matese, A.; Di Gennaro, S.F.; Santesteban, L.G. Methods to compare the spatial variability of UAV-based spectral and geometric information with ground autocorrelated data. A case of study for precision viticulture. Comput. Electron. Agric. 2019, 162, 931–940. [Google Scholar] [CrossRef]
- Song, Y.; Wang, J.; Ge, Y.; Xu, C. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data. GIScience Remote Sens. 2020, 57, 593–610. [Google Scholar] [CrossRef]
- Zhou, H.; Van Rompaey, A. Detecting the impact of the “Grain for Green” program on the mean annual vegetation cover in the Shaanxi province, China using SPOT-VGT NDVI data. Land Use Policy 2009, 26, 954–960. [Google Scholar] [CrossRef]
- Qian, C.; Shao, L.; Hou, X.; Zhang, B.; Chen, W.; Xia, X. Detection and attribution of vegetation greening trend across distinct local landscapes under China’ s Grain to Green Program: A case study in Shaanxi Province. Catena 2019, 183, 104182. [Google Scholar] [CrossRef]
- Bai, Y. Analysis of vegetation dynamics in the Qinling-Daba Mountains region from MODIS time series data. Ecol. Indic. 2021, 129, 108029. [Google Scholar] [CrossRef]
- Chen, T.; Xia, J.; Zou, L.; Hong, S. Quantifying the influences of natural factors and human activities on NDVI changes in the Hanjiang River Basin, China. Remote Sens. 2020, 12, 3780. [Google Scholar] [CrossRef]
Data Type | Code | Variables | Unit |
---|---|---|---|
Climate | X1 | Mean annual temperature | °C |
X2 | Mean annual precipitation | mm | |
X3 | Aridity index | / | |
X4 | Wetness index | / | |
X5 | Total radiation | MJ/m2 | |
Vegetation | X6 | Vegetation type | / |
Geomorphology | X7 | Landform type | / |
Soil | X8 | Soil type | / |
Topography | X9 | Elevation | m |
X10 | Aspect | ° | |
X11 | Slope | ° |
Interaction Types | Types of Interactions | Description |
---|---|---|
q(X1 ∩ X2) < Min(q(X1), q(X2)) | Nonlinear weaken | The interaction between two variables nonlinearly weakens the influence of a single variable. |
Min(q(X1),q(X2)) < q(X1 ∩ X2) < Max(q(X1), q(X2)) | Univariate weaken | The interaction between two variables univariate weakens the influence of a single variable. |
q(X1 ∩ X2) = q(X1) + q(X2) | Bivariate enhanced | The interaction between two variables bivariate enhanced the influence of a single variable. |
q(X1 ∩ X2) = q(X1) + q(X2) | Independent | The interaction between two variables is independent. |
q(X1 ∩ X2) > q(X1) + q(X2) | Nonlinear enhanced | The interaction between two variables nonlinear enhanced the influence of a single variable. |
NDVI Levels | NDVI Value | Area (km2) | Percentage (%) |
---|---|---|---|
Low | ≤0.2 | 0.25 | 0.00 |
Medium-low | 0.2–0.4 | 440.50 | 0.05 |
Medium | 0.4–0.6 | 10,876.25 | 1.22 |
Medium-high | 0.6–0.8 | 199,352.00 | 22.34 |
High | >0.8 | 681,497.50 | 76.39 |
Environmental Factor | Suitable Range of NDVI | NDVI Mean Value |
---|---|---|
X1 (Mean annual temperature) | 4.79–8.11 °C | 0.872 |
X2 (Mean annual precipitation) | 1261.65–1601.47 mm | 0.865 |
X3 (Aridity index) | 0.43–0.82 | 0.862 |
X4 (Wetness index) | 1.60–2.42 | 0.890 |
X5 (Total radiation) | 4886.14–5031.33 MJ/m2 | 0.860 |
X6 (Vegetation type) | Mixed broadleaf–conifer mixed forest | 0.885 |
X7 (Landform type) | Large undulating | 0.862 |
X8 (Soil type) | Leaching soil | 0.857 |
X9 (Elevation) | 1412–1918 m | 0.858 |
X10 (Aspect) | Flat | 0.848 |
X11 (Slope) | 25.09–29.69° | 0.860 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Zhou, Y.; Yu, Y.; Li, F.; Zhang, R.; Li, W. Using the Geodetector Method to Characterize the Spatiotemporal Dynamics of Vegetation and Its Interaction with Environmental Factors in the Qinba Mountains, China. Remote Sens. 2022, 14, 5794. https://doi.org/10.3390/rs14225794
Zhang S, Zhou Y, Yu Y, Li F, Zhang R, Li W. Using the Geodetector Method to Characterize the Spatiotemporal Dynamics of Vegetation and Its Interaction with Environmental Factors in the Qinba Mountains, China. Remote Sensing. 2022; 14(22):5794. https://doi.org/10.3390/rs14225794
Chicago/Turabian StyleZhang, Shuhui, Yuke Zhou, Yong Yu, Feng Li, Ruixin Zhang, and Wenlong Li. 2022. "Using the Geodetector Method to Characterize the Spatiotemporal Dynamics of Vegetation and Its Interaction with Environmental Factors in the Qinba Mountains, China" Remote Sensing 14, no. 22: 5794. https://doi.org/10.3390/rs14225794