Power-Type Structural Self-Constrained Inversion Methods of Gravity and Magnetic Data
Abstract
:1. Introduction
2. Methodology
2.1. Forward and Inversion Method
2.2. Power-Type Structural Self-Constrained (PTSS) Inversion Method
3. Data and Raw Materials
3.1. Synthetic Model
3.2. Real Data
4. Result
4.1. PTSS Respective Inversion Model Test
4.2. PTSS Joint Inversion Model Test
4.3. Real Data Inversion and Interpretation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nabighian, M.N.; Ander, M.E.; Grauch, V.J.S.; Hansen, R.O.; LaFehr, T.R.; Li, Y.; Pearson, W.C.; Peirce, J.W.; Phillips, J.D.; Ruder, M.E. Historical development of the gravity method in exploration. Geophysics 2005, 70, 63ND–89ND. [Google Scholar] [CrossRef]
- Moazam, S.; Aghajani, H.; Kalate, A.N. The priority of microgravity focusing inversion in 3D modeling of subsurface voids. Environ. Earth Sci. 2021, 80, 343. [Google Scholar] [CrossRef]
- Lü, Q.T.; Qi, G.; Yan, J.Y. 3D geologic model of Shizishan ore field constrained by gravity and magnetic interactive modeling: A case history. Geophysics 2013, 78, B25–B35. [Google Scholar] [CrossRef]
- Zhang, M.H.; Xu, D.S.; Chen, J.W. Geological structure of the yellow sea area from regional gravity and magnetic interpretation. Appl. Geophys. 2007, 4, 75–83. [Google Scholar] [CrossRef]
- Tikhonov, A.N.; Arsenin, V.I. Solutions of Ill-Posed Problems; Wiley: Hoboken, NJ, USA, 1977. [Google Scholar]
- Li, Y.; Oldenburg, D.W. 3-D inversion of gravity data. Geophysics 1998, 63, 109–119. [Google Scholar] [CrossRef]
- Boulanger, O.; Chouteau, M. Constraints in 3D gravity inversion. Geophys. Prospect. 2001, 49, 265–280. [Google Scholar] [CrossRef]
- Farquharson, C.G. Constructing piecewise-constant models in multidimensional minimum-structure inversions. Geophysics 2007, 73, K1–K9. [Google Scholar] [CrossRef]
- Rezaie, M.; Moradzadeh, A.; Kalate, A.N.; Aghajani, H. Fast 3D Focusing Inversion of Gravity Data Using Reweighted Regularized Lanczos Bidiagonalization Method. Pure Appl. Geophys. 2017, 174, 359–374. [Google Scholar] [CrossRef]
- Last, B.J.; Kubik, K. Compact gravity inversion. Geophysics 1983, 48, 713–721. [Google Scholar] [CrossRef]
- Portniaguine, O.; Zhdanov, M.S. Focusing geophysical inversion images. Geophysics 1999, 64, 874–887. [Google Scholar] [CrossRef]
- Pilkington, M. 3D magnetic data-space inversion with sparseness constraints. Geophysics 2008, 74, L7–L15. [Google Scholar] [CrossRef]
- Rezaie, M. A sigmoid stabilizing function for fast sparse 3D inversion of magnetic data. Near Surf. Geophys. 2020, 18, 149–159. [Google Scholar] [CrossRef]
- Rezaie, M. 3D non-smooth inversion of gravity data by zero order minimum entropy stabilizing functional. Phys. Earth Planet. Inter. 2019, 294. [Google Scholar] [CrossRef]
- Rezaie, M. Focusing inversion of gravity data with an error function stabilizer. J. Appl. Geophys. 2023, 208, 104890. [Google Scholar] [CrossRef]
- Capriotti, J.; Li, Y. Gravity and gravity gradient data: Understanding their information content through joint inversions. In SEG Technical Program Expanded Abstracts; SEG: Houston, TX, USA, 2014; pp. 1329–1333. [Google Scholar]
- Qin, P.; Huang, D.; Yuan, Y.; Geng, M.; Liu, J. Integrated gravity and gravity gradient 3D inversion using the non-linear conjugate gradient. J. Appl. Geophys. 2016, 126, 52–73. [Google Scholar] [CrossRef]
- Capriotti, J.; Li, Y. Joint inversion of gravity and gravity gradient data: A systematic evaluation. Geophysics 2022, 87, G29–G44. [Google Scholar] [CrossRef]
- Ma, G.; Gao, T.; Li, L.; Wang, T.; Niu, R.; Li, X. High-Resolution Cooperate Density-Integrated Inversion Method of Airborne Gravity and Its Gradient Data. Remote Sens. 2021, 13, 4157. [Google Scholar] [CrossRef]
- Ma, G.; Zhao, Y.; Xu, B.; Li, L.; Wang, T. High-Precision Joint Magnetization Vector Inversion Method of Airborne Magnetic and Gradient Data with Structure and Data Double Constraints. Remote Sens. 2022, 14, 2508. [Google Scholar] [CrossRef]
- Gallardo, L.A.; Meju, M.A. Characterization of heterogeneous near-surface materials by joint 2D inversion of dc resistivity and seismic data. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Zhou, J.; Meng, X.; Guo, L.; Zhang, S. Three-dimensional cross-gradient joint inversion of gravity and normalized magnetic source strength data in the presence of remanent magnetization. J. Appl. Geophys. 2015, 119, 51–60. [Google Scholar] [CrossRef]
- Gallardo, L.A.; Meju, M.A. Joint two-dimensional DC resistivity and seismic travel time inversion with cross-gradients constraints. J. Geophys. Res. Solid Earth 2004, 109. [Google Scholar] [CrossRef]
- Fregoso, E.; Gallardo, L.A. Cross-gradients joint 3D inversion with applications to gravity and magnetic data. Geophysics 2009, 74, L31–L42. [Google Scholar] [CrossRef]
- Meng, Q.; Ma, G.; Li, L.; Wang, T.; Han, J. 3-D Cross-Gradient Joint Inversion Method for Gravity and Magnetic Data with Unstructured Grids Based on Second-Order Taylor Formula: Its Application to the Southern Greater Khingan Range. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5914816. [Google Scholar] [CrossRef]
- Moorkamp, M.; Heincke, B.; Jegen, M.; Roberts, A.W.; Hobbs, R.W. A framework for 3-D joint inversion of MT, gravity and seismic refraction data. Geophys. J. Int. 2011, 184, 477–493. [Google Scholar] [CrossRef]
- Shi, B.; Yu, P.; Zhao, C.; Zhang, L.; Yang, H. Linear correlation constrained joint inversion using squared cosine similarity of regional residual model vectors. Geophys. J. Int. 2018, 215, 1291–1307. [Google Scholar] [CrossRef]
- Paasche, H.; Tronicke, J. Cooperative inversion of 2D geophysical data sets: A zonal approach based on fuzzy c-means cluster analysis. Geophysics 2007, 72, A35–A39. [Google Scholar] [CrossRef]
- Chen, J.; Hoversten, G.M. Joint inversion of marine seismic AVA and CSEM data using statistical rock-physics models and Markov random fields. Geophysics 2012, 77, R65–R80. [Google Scholar] [CrossRef]
- Zhdanov, M.S.; Gribenko, A.; Wilson, G. Generalized joint inversion of multimodal geophysical data using Gramian constraints. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Lin, W.; Zhdanov, M.S. The Gramian Method of Joint Inversion of the Gravity Gradiometry and Seismic Data. Pure Appl. Geophys. 2019, 176, 1659–1672. [Google Scholar] [CrossRef]
- Zhdanov, M.S.; Jorgensen, M.; Tao, M. Probabilistic approach to Gramian inversion of multiphysics data. Front. Earth Sci. 2023, 11, 1127597. [Google Scholar] [CrossRef]
- Kong, R.J.; Hu, X.Y.; Cai, H.Z. Three-dimensional joint inversion of gravity and magnetic data using Gramian constraints and Gauss-Newton method. Chin. J. Geophys. Chin. Ed. 2023, 66, 3493–3513. [Google Scholar] [CrossRef]
- Jiao, J.; Dong, S.; Zhou, S.; Zeng, Z.; Lin, T. 3-D Gravity and Magnetic Joint Inversion Based on Deep Learning Combined with Measurement Data Constraint. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5900814. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Liao, X.L.; Cao, Y.Y.; Hou, Z.L.; Fan, X.T.; Xu, Z.X.; Lu, R.Q.; Feng, T.; Yao, Y.; Shi, Z.Y. Joint gravity and gravity gradient inversion based on deep learning. Chin. J. Geophys. Chin. Ed. 2021, 64, 1435–1452. [Google Scholar] [CrossRef]
- Hu, Y.Y.; Wei, X.L.; Wu, X.Q.; Sun, J.J.; Chen, J.P.; Huang, Y.Q.; Chen, J.F. A deep learning-enhanced framework for multiphysics joint inversion. Geophysics 2023, 88, K13–K26. [Google Scholar] [CrossRef]
- Aster, R.; Borchers, B.; Thurber, C. Parameter Estimation and Inverse Problem; Academic Press: New York, NY, USA, 2005. [Google Scholar]
- Menke, W. Geophysical Data Analysis: Discrete Inverse Theory (MATLAB Edition); Academic Press: London, UK, 2012. [Google Scholar]
- Camacho, A.G.; Montesinos, F.G.; Vieira, R. Gravity inversion by means of growing bodies. Geophysics 1999, 65, 95–101. [Google Scholar] [CrossRef]
- Krahenbuhl, R.A.; Li, Y. Inversion of gravity data using a binary formulation. Geophys. J. Int. 2006, 167, 543–556. [Google Scholar] [CrossRef]
- Krahenbuhl, R.A.; Li, Y. Hybrid optimization for lithologic inversion and time-lapse monitoring using a binary formulation. Geophysics 2009, 74, I55–I65. [Google Scholar] [CrossRef]
- Lelièvre, P.G.; Oldenburg, D.W. A comprehensive study of including structural orientation information in geophysical inversions. Geophys. J. Int. 2009, 178, 623–637. [Google Scholar] [CrossRef]
- Li, Y.; Oldenburg, D.W. Incorporating geological dip information into geophysical inversions. Geophysics 2000, 65, 148–157. [Google Scholar] [CrossRef]
- Zhou, J.; Revil, A.; Karaoulis, M.; Hale, D.; Doetsch, J.; Cuttler, S. Image-guided inversion of electrical resistivity data. Geophys. J. Int. 2014, 197, 292–309. [Google Scholar] [CrossRef]
- Blakely, R.J. Potential Theory in Gravity and Magnetic Applications; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Hansen, P.C.; O’Leary, D.P. The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems. SIAM J. Sci. Comput. 1993, 14, 1487–1503. [Google Scholar] [CrossRef]
- Hao, X.Z.; Yang, Y.H.; Li, Y.P.; Gao, L.H.; Chen, L. Ore-controlling Characteristics and Prospecting criteria of iron deposits in Qihe area of Western Shandong. J. Jilin Univ. Earth Sci. Ed. 2019, 49, 982–991. [Google Scholar]
- Gao, X.; Xiong, S.; Yu, C.; Zhang, D.; Wu, C. The Estimation of Magnetite Prospective Resources Based on Aeromagnetic Data: A Case Study of Qihe Area, Shandong Province, China. Remote Sens. 2021, 13, 1216. [Google Scholar] [CrossRef]
- Wu, C.P.; Yu, C.C.; Wang, W.P.; Ma, X.B.; Fan, Z.G.; Zhu, H.W. Physical characteristics of rocks and ores and their application in Qihe area, Western Shandong. Adv. Earth Sci. 2019, 34, 1099–1107. [Google Scholar]
- Wu, C.P.; Yu, C.C.; Zhou, M.L.; Wang, W.P.; Ma, X.B.; Li, S.Q. Residual calculation of airborne and ground magnetic field and its prospecting application in heavily covered plain area. Prog. Geophys. 2020, 35, 663–668. [Google Scholar]
- Zhu, Y.Z.; Zhou, M.L.; Gao, Z.J.; Zhang, X.B. The discovery of the Qihe-Yucheng skarn type rich iron deposit in Shandong and its exploration significance. Geol. Bull. China 2018, 37, 938–944. [Google Scholar]
- Wang, W.P.; Wu, C.P.; Ma, X.B. Aeromagnetic field feature and iron ore target prospecting in deep coverage area of Qihe in Shandong Province. Geol. Surv. China 2020, 7, 23–29. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ming, Y.; Ma, G.; Wang, T.; Ma, B.; Meng, Q.; Li, Z. Power-Type Structural Self-Constrained Inversion Methods of Gravity and Magnetic Data. Remote Sens. 2024, 16, 681. https://doi.org/10.3390/rs16040681
Ming Y, Ma G, Wang T, Ma B, Meng Q, Li Z. Power-Type Structural Self-Constrained Inversion Methods of Gravity and Magnetic Data. Remote Sensing. 2024; 16(4):681. https://doi.org/10.3390/rs16040681
Chicago/Turabian StyleMing, Yanbo, Guoqing Ma, Taihan Wang, Bingzhen Ma, Qingfa Meng, and Zongrui Li. 2024. "Power-Type Structural Self-Constrained Inversion Methods of Gravity and Magnetic Data" Remote Sensing 16, no. 4: 681. https://doi.org/10.3390/rs16040681