Delineation of Intermittent Rivers and Ephemeral Streams Using a Hybrid Method
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Source Data
2.2.1. Water Body Data
2.2.2. Water Indices Data
2.2.3. Topography Data
2.2.4. Vector Data
2.2.5. Comparator Data
3. Methods
3.1. Overview
3.2. Preprocessing
3.3. Deriving Key Points
3.4. Building Topology
3.5. Delineating the River Network
3.6. Positional Accuracy Metric
4. Experiments and Results
4.1. Results of Intermittent Rivers and Ephemeral Streams
4.2. Results of Positional Accuracy Assessment
5. Discussion
5.1. Positional Accuracy Assessment and Comparison Scheme
5.2. Linking Topography with Water Body Position
5.3. Limitations and Future Work
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Oki, T.; Kanae, S. Global Hydrological Cycles and World Water Resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef] [PubMed]
- Acuña, V.; Hunter, M.; Ruhí, A. Managing Temporary Streams and Rivers as Unique Rather than Second-Class Ecosystems. Biol. Conserv. 2017, 211, 12–19. [Google Scholar] [CrossRef]
- Datry, T.; Larned, S.T.; Tockner, K. Intermittent Rivers: A Challenge for Freshwater Ecology. BioScience 2014, 64, 229–235. [Google Scholar] [CrossRef]
- Messager, M.L.; Lehner, B.; Cockburn, C.; Lamouroux, N.; Pella, H.; Snelder, T.; Tockner, K.; Trautmann, T.; Watt, C.; Datry, T. Global Prevalence of Non-Perennial Rivers and Streams. Nature 2021, 594, 391–397. [Google Scholar] [CrossRef]
- Busch, M.H.; Costigan, K.H.; Fritz, K.M.; Datry, T.; Krabbenhoft, C.A.; Hammond, J.C.; Zimmer, M.; Olden, J.D.; Burrows, R.M.; Dodds, W.K.; et al. What’s in a Name? Patterns, Trends, and Suggestions for Defining Non-Perennial Rivers and Streams. Water 2020, 12, 1980. [Google Scholar] [CrossRef]
- Hammond, J.C.; Zimmer, M.; Shanafield, M.; Kaiser, K.; Godsey, S.E.; Mims, M.C.; Zipper, S.C.; Burrows, R.M.; Kampf, S.K.; Dodds, W. Spatial Patterns and Drivers of Nonperennial Flow Regimes in the Contiguous United States. Geophys. Res. Lett. 2021, 48, e2020GL090794. [Google Scholar] [CrossRef]
- Wohl, E.; Lane, S.N.; Wilcox, A.C. The Science and Practice of River Restoration. Water Resour. Res. 2015, 51, 5974–5997. [Google Scholar] [CrossRef]
- Brown, A.G.; Lespez, L.; Sear, D.A.; Macaire, J.-J.; Houben, P.; Klimek, K.; Brazier, R.E.; Van Oost, K.; Pears, B. Natural vs Anthropogenic Streams in Europe: History, Ecology and Implications for Restoration, River-Rewilding and Riverine Ecosystem Services. Earth-Sci. Rev. 2018, 180, 185–205. [Google Scholar] [CrossRef]
- Levick, L.R.; Goodrich, D.C.; Hernandez, M.; Fonseca, J.; Semmens, D.J.; Stromberg, J.C.; Tluczek, M.; Leidy, R.A.; Scianni, M.; Guertin, D.P. The Ecological and Hydrological Significance of Ephemeral and Intermittent Streams in the Arid and Semi-Arid American Southwest; US Environmental Protection Agency, Office of Research and Development: Washington, DC, USA, 2008. [Google Scholar]
- Yao, F.; Livneh, B.; Rajagopalan, B.; Wang, J.; Crétaux, J.-F.; Wada, Y.; Berge-Nguyen, M. Satellites Reveal Widespread Decline in Global Lake Water Storage. Science 2023, 380, 743–749. [Google Scholar] [CrossRef]
- McKenna, O.P.; Sala, O.E. Playa-wetlands Effects on Dryland Biogeochemistry: Space and Time Interactions. J. Geophys. Res. Biogeosci. 2018, 123, 1879–1887. [Google Scholar] [CrossRef]
- Sims, D.B. Contaminant Mobilization from Anthropogenic Influences in the Techatticup Wash, Nelson, Nevada (USA). Soil Sediment Contam. 2010, 19, 515–530. [Google Scholar] [CrossRef]
- Vivoni, E.R.; Bowman, R.S.; Wyckoff, R.L.; Jakubowski, R.T.; Richards, K.E. Analysis of a Monsoon Flood Event in an Ephemeral Tributary and Its Downstream Hydrologic Effects. Water Resour. Res. 2006, 42, W03404. [Google Scholar] [CrossRef]
- Bateman, H.; Stromberg, J.; Banville, M.; Makings, E.; Scott, B.; Suchy, A.; Wolkis, D. Novel Water Sources Restore Plant and Animal Communities along an Urban River. Ecohydrology 2015, 8, 792–811. [Google Scholar] [CrossRef]
- Shanafield, M.; Bourke, S.A.; Zimmer, M.A.; Costigan, K.H. An Overview of the Hydrology of Non-perennial Rivers and Streams. Wiley Interdiscip. Rev. Water 2021, 8, e1504. [Google Scholar] [CrossRef]
- Price, A.N.; Jones, C.N.; Hammond, J.C.; Zimmer, M.A.; Zipper, S.C. The Drying Regimes of Non-perennial Rivers and Streams. Geophys. Res. Lett. 2021, 48, e2021GL093298. [Google Scholar] [CrossRef]
- Gronewold, A.D.; Stow, C.A. Water Loss from the Great Lakes. Science 2014, 343, 1084–1085. [Google Scholar] [CrossRef]
- Acuña, V.; Datry, T.; Marshall, J.; Barceló, D.; Dahm, C.N.; Ginebreda, A.; McGregor, G.; Sabater, S.; Tockner, K.; Palmer, M.A. Why Should We Care About Temporary Waterways? Science 2014, 343, 1080–1081. [Google Scholar] [CrossRef]
- Allen, G.H.; Pavelsky, T.M. Global Extent of Rivers and Streams. Science 2018, 361, 585–588. [Google Scholar] [CrossRef] [PubMed]
- Obida, C.B.; Blackburn, G.A.; Whyatt, J.D.; Semple, K.T. River Network Delineation from Sentinel-1 SAR Data. Int. J. Appl. Earth Obs. Geoinf. 2019, 83, 101910. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, J.; Li, J.; Meng, Y.; Pokhrel, Y.; Zhang, H. Basin-Scale High-Resolution Extraction of Drainage Networks Using 10-m Sentinel-2 Imagery. Remote Sens. Environ. 2021, 255, 112281. [Google Scholar] [CrossRef]
- Yamazaki, D.; Ikeshima, D.; Sosa, J.; Bates, P.D.; Allen, G.H.; Pavelsky, T.M. MERIT Hydro: A High-resolution Global Hydrography Map Based on Latest Topography Dataset. Water Resour. Res. 2019, 55, 5053–5073. [Google Scholar] [CrossRef]
- Thieme, M.; Lehner, B.; Abell, R.; Hamilton, S.K.; Kellndorfer, J.; Powell, G.; Riveros, J.C. Freshwater Conservation Planning in Data-Poor Areas: An Example from a Remote Amazonian Basin (Madre de Dios River, Peru and Bolivia). Biol. Conserv. 2007, 135, 484–501. [Google Scholar] [CrossRef]
- Bizzi, S.; Demarchi, L.; Grabowski, R.C.; Weissteiner, C.; Van de Bund, W. The Use of Remote Sensing to Characterise Hydromorphological Properties of European Rivers. Aquat. Sci. 2016, 78, 57–70. [Google Scholar] [CrossRef]
- Chen, H.; Liang, Q.; Liang, Z.; Liu, Y.; Ren, T. Extraction of Connected River Networks from Multi-Temporal Remote Sensing Imagery Using a Path Tracking Technique. Remote Sens. Environ. 2020, 246, 111868. [Google Scholar] [CrossRef]
- Gülgen, F. A Stream Ordering Approach Based on Network Analysis Operations. Geocarto Int. 2017, 32, 322–333. [Google Scholar] [CrossRef]
- He, C.; Yang, C.-J.; Turowski, J.M.; Ott, R.F.; Braun, J.; Tang, H.; Ghantous, S.; Yuan, X.; Stucky De Quay, G. A Global Dataset of the Shape of Drainage Systems. Earth Syst. Sci. Data 2024, 16, 1151–1166. [Google Scholar] [CrossRef]
- O’Callaghan, J.F.; Mark, D.M. The Extraction of Drainage Networks from Digital Elevation Data. Comput. Vis. Graph. Image Process. 1984, 28, 323–344. [Google Scholar] [CrossRef]
- Tarboton, D.G. A New Method for the Determination of Flow Directions and Upslope Areas in Grid Digital Elevation Models. Water Resour. Res. 1997, 33, 309–319. [Google Scholar] [CrossRef]
- Solomon, V.; Kumar, D.N.; Indu, J. Extraction of Drainage Pattern from ASTER and SRTM Data for a River Basin Using GIS Tools. Int. Proc. Chem. Biol. Environ. Eng. (IPCBEE) 2012, 33, 120–124. [Google Scholar]
- Cserép, M.; Lindenbergh, R. Distributed Processing of Dutch AHN Laser Altimetry Changes of the Built-up Area. Int. J. Appl. Earth Obs. Geoinf. 2023, 116, 103174. [Google Scholar] [CrossRef]
- Kumar, B.; Patra, K.C.; Lakshmi, V. Error in Digital Network and Basin Area Delineation Using D8 Method: A Case Study in a Sub-Basin of the Ganga. J. Geol. Soc. India 2017, 89, 65–70. [Google Scholar] [CrossRef]
- Martinis, S.; Kuenzer, C.; Wendleder, A.; Huth, J.; Twele, A.; Roth, A.; Dech, S. Comparing Four Operational SAR-Based Water and Flood Detection Approaches. Int. J. Remote Sens. 2015, 36, 3519–3543. [Google Scholar] [CrossRef]
- Guo, Z.; Wu, L.; Huang, Y.; Guo, Z.; Zhao, J.; Li, N. Water-Body Segmentation for SAR Images: Past, Current, and Future. Remote Sens. 2022, 14, 1752. [Google Scholar] [CrossRef]
- Isikdogan, F.; Bovik, A.; Passalacqua, P. RivaMap: An Automated River Analysis and Mapping Engine. Remote Sens. Environ. 2017, 202, 88–97. [Google Scholar] [CrossRef]
- Yao, F.; Wang, J.; Wang, C.; Crétaux, J.-F. Constructing Long-Term High-Frequency Time Series of Global Lake and Reservoir Areas Using Landsat Imagery. Remote Sens. Environ. 2019, 232, 111210. [Google Scholar] [CrossRef]
- Gao, B.-C. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Xu, H. Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, Y.; Ling, F.; Wang, Q.; Li, W.; Li, X. Water Bodies’ Mapping from Sentinel-2 Imagery with Modified Normalized Difference Water Index at 10-m Spatial Resolution Produced by Sharpening the SWIR Band. Remote Sens. 2016, 8, 354. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, J.; Li, J.; Zhang, D.D. Multi-Spectral Water Index (MuWI): A Native 10-m Multi-Spectral Water Index for Accurate Water Mapping on Sentinel-2. Remote Sens. 2018, 10, 1643. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A New Technique for Surface Water Mapping Using Landsat Imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Ogilvie, A.; Belaud, G.; Delenne, C.; Bailly, J.-S.; Bader, J.-C.; Oleksiak, A.; Ferry, L.; Martin, D. Decadal Monitoring of the Niger Inner Delta Flood Dynamics Using MODIS Optical Data. J. Hydrol. 2015, 523, 368–383. [Google Scholar] [CrossRef]
- Sghaier, M.O.; Foucher, S.; Lepage, R. River Extraction from High-Resolution SAR Images Combining a Structural Feature Set and Mathematical Morphology. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 1025–1038. [Google Scholar] [CrossRef]
- Duchoň, F.; Babinec, A.; Kajan, M.; Beňo, P.; Florek, M.; Fico, T.; Jurišica, L. Path Planning with Modified a Star Algorithm for a Mobile Robot. Procedia Eng. 2014, 96, 59–69. [Google Scholar] [CrossRef]
- Wei, Y. Establishing Developing and Applying of the Space-Air-Field Integrated Eco-Monitoring and Data Infrastructure of the Three-River-Source National Park. In The Boundaries of the Source Regions in Sanjiangyuan Region; National Tibetan Plateau Data Center: Beijing, China, 2018. [Google Scholar]
- Lehner, B.; Grill, G. Global River Hydrography and Network Routing: Baseline Data and New Approaches to Study the World’s Large River Systems. Hydrol. Process. 2013, 27, 2171–2186. [Google Scholar] [CrossRef]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-Resolution Mapping of Global Surface Water and Its Long-Term Changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, D.; Ikeshima, D.; Tawatari, R.; Yamaguchi, T.; O’Loughlin, F.; Neal, J.C.; Sampson, C.C.; Kanae, S.; Bates, P.D. A High-accuracy Map of Global Terrain Elevations. Geophys. Res. Lett. 2017, 44, 5844–5853. [Google Scholar] [CrossRef]
- Liu, K.; Song, C.; Ke, L.; Jiang, L.; Pan, Y.; Ma, R. Global Open-Access DEM Performances in Earth’s Most Rugged Region High Mountain Asia: A Multi-Level Assessment. Geomorphology 2019, 338, 16–26. [Google Scholar] [CrossRef]
- Verdin, K.L. Hydrologic Derivatives for Modeling and Analysis—A New Global High-Resolution Database; US Geological Survey: Drive Reston, VA, USA, 2017. [Google Scholar]
- Crippen, R.; Buckley, S.; Agram, P.; Belz, E.; Gurrola, E.; Hensley, S.; Kobrick, M.; Lavalle, M.; Martin, J.; Neumann, M. NASADEM Global Elevation Model: Methods and Progress. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 125–128. [Google Scholar] [CrossRef]
- Airbus Defence and Space. Copernicus DEM: Copernicus Digital Elevation Model Product Handbook; Airbus Defence and Space—Intelligence: Potsdam, Germany, 2020. [Google Scholar]
- Takaku, J.; Tadono, T.; Doutsu, M.; Ohgushi, F.; Kai, H. Updates of ‘AW3D30’ALOS Global Digital Surface Model with Other Open Access Datasets. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 183–189. [Google Scholar] [CrossRef]
- Edelsbrunner, H. Alpha Shapes-a Survey. In Tessellations in the Sciences: Virtues, Techniques and Applications of Geometric Tilings; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Lafarge, T.; Pateiro-López, B.; Possolo, A.; Dunkers, J. R Implementation of a Polyhedral Approximation to a 3D Set of Points Using the α-Shape. J. Stat. Softw. 2014, 56, 1–19. [Google Scholar] [CrossRef]
- Gunawan, R.D.; Napianto, R.; Borman, R.I.; Hanifah, I. Implementation of Dijkstra’s Algorithm in Determining the Shortest Path (Case Study: Specialist Doctor Search in Bandar Lampung). Int. J. Inf. Syst. Comput. Sci. 2019, 3, 98–106. [Google Scholar] [CrossRef]
- Haklay, M. How Good Is Volunteered Geographical Information? A Comparative Study of OpenStreetMap and Ordnance Survey Datasets. Environ. Plan. B Plan. Des. 2010, 37, 682–703. [Google Scholar] [CrossRef]
Name | Provider | Temporal Extent |
---|---|---|
SRTM | NASA & CGIAR | 11 February 2000–22 February 2000 |
ASTER | NASA & METI | 1 March 2000–30 November 2013 |
NASA | NASA & USGS & JPL-Caltech | 11 February 2000–22 February 2000 |
GLO-30 | ESA | 1 December 2010–31 January 2015 |
AW3D30 | JAXA | 24 January 2006–12 May 2011 |
Source | Method | 15 Meters | 30 Meters | 45 Meters | 60 Meters |
---|---|---|---|---|---|
Esri | Ours | 62.2% | 89.5% | 95.3% | 97.4% |
SRTM | 37.6% | 66.3% | 80.6% | 88.9% | |
ASTER | 27. 5% | 52.9% | 68.1% | 80.4% | |
NASA | 38.5% | 66.7% | 80.5% | 88.1% | |
GLO-30 | 60.4% | 86.8% | 93.2% | 95.2% | |
AW3D30 | 46. 7% | 74.7% | 88.1% | 91.7% | |
Ours | 69.7% | 92.6% | 96.5% | 98.5% | |
SRTM | 36.1% | 64.4% | 79.6% | 89.1% | |
ASTER | 27.3% | 51.1% | 68.9% | 81.3% | |
NASA | 36.4% | 64.3% | 79.2% | 88.2% | |
GLO-30 | 56.5% | 82.5% | 92.4% | 96.8% | |
AW3D30 | 43.8% | 72.9% | 86.3% | 92.2% | |
Tianditu | Ours | 66.9% | 93.3% | 97.4% | 98.4% |
SRTM | 35.6% | 67.9% | 80.4% | 88.7% | |
ASTER | 27.5% | 50.6% | 68.3% | 80.1% | |
NASA | 38.5% | 66.2% | 80.2% | 89.3% | |
GLO-30 | 57.4% | 85.9% | 94.1% | 97.1% | |
AW3D30 | 46.9% | 75.1% | 88.4% | 92.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, N.; Chen, F.; Yu, B.; Zhang, H.; Zhao, H.; Wang, L. Delineation of Intermittent Rivers and Ephemeral Streams Using a Hybrid Method. Remote Sens. 2024, 16, 2489. https://doi.org/10.3390/rs16132489
Wang N, Chen F, Yu B, Zhang H, Zhao H, Wang L. Delineation of Intermittent Rivers and Ephemeral Streams Using a Hybrid Method. Remote Sensing. 2024; 16(13):2489. https://doi.org/10.3390/rs16132489
Chicago/Turabian StyleWang, Ning, Fang Chen, Bo Yu, Haiying Zhang, Huichen Zhao, and Lei Wang. 2024. "Delineation of Intermittent Rivers and Ephemeral Streams Using a Hybrid Method" Remote Sensing 16, no. 13: 2489. https://doi.org/10.3390/rs16132489