Spatiotemporal Variations in Near-Surface Soil Water Content across Agroecological Regions of Mainland India: 1979–2022 (44 Years)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Mann–Kendall Trend Test
2.3.2. Spearman’s Rank Correlation Test
3. Results
3.1. Spatial Variations of Near-Surface SWC
3.2. Interannual Variation in the Near-Surface SWC
3.3. Spatiotemporal Trends in Near-Surface SWC
3.4. Temporal Association of Near-Surface SWC with Environmental Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luo, X.; Li, S.; Yang, W.; Liu, L.; Shi, Y.; Lai, Y.; Yu, P.; Yang, Z.; Luo, K.; Zhou, T.; et al. Spatio-temporal changes in global root zone soil moisture from 1981 to 2017. J. Hydrol. 2023, 626, 130297. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; Volume 151. [Google Scholar]
- Datta, P.; Das, S. Analysis of long-term precipitation changes in West Bengal, India: An approach to detect monotonic trends influenced by autocorrelations. Dyn. Atmos. Oceans. 2019, 88, 101–118. [Google Scholar] [CrossRef]
- Sinha, N.K.; Mohanty, M.; Somasundaram, J.; Chaudhary, R.S.; Patra, H.; Hati, K.M.; Singh, R.P.; Thakur, J.K.; Kumar, J.; Kumar, D.; et al. Maize productivity analysis in response to climate change under different nitrogen management strategies. J. Agrometeorol. 2021, 23, 279–285. [Google Scholar] [CrossRef]
- Srivastava, A.; Kumari, N.; Maza, M. Hydrological response to agricultural land use heterogeneity using variable infiltration capacity model. Water Resour. Manag. 2020, 34, 3779–3794. [Google Scholar] [CrossRef]
- Shah, H.L.; Mishra, V. Hydrologic Changes in Indian Sub-continental River Basins (1901–2012). J. Hydrometeorol. 2016, 17, 2667–2687. [Google Scholar] [CrossRef]
- Mallick, T.; Pandidurai, D.; Sharma, D.; Sharma, A.; Panda, S.K. A comparative assessment of meteorological drought characteristics in agro-climatic zones of Rajasthan (arid) and Tamil Nadu (humid), India. Nat. Hazards 2024, 120, 4181–4203. [Google Scholar] [CrossRef]
- Pandey, K.B.; Khare, D. Identification of Trend in Long Term Precipitation and Reference Evapotranspiration over Narmada River Basin (India). Glob. Planet Chang. 2018, 161, 172–182. [Google Scholar] [CrossRef]
- Goswami, B.N.; Venugopal, V.; Sengupta, D.; Madhusoodanan, M.S.; Xavier, P.K. Increasing trend of extreme rain events over India in a warming environment. Science 2006, 314, 1442–1445. [Google Scholar] [CrossRef]
- Ramesh, K.V.; Goswami, P. The shrinking Indian summer monsoon. In Research Report RR CM 0709; CSIR Centre for Mathematical Modelling and Computer Simulation: Bangalore, India, 2007. [Google Scholar]
- Kothawale, D.R.; Revadekar, J.V.; Kumar, K.R. Recent trends in pre-monsoon daily temperature extremes over India. J. Earth Syst. Sci. 2010, 119, 51–65. [Google Scholar] [CrossRef]
- Arora, M.; Goel, N.K.; Singh, P. Evaluation of temperature trends over India. Hydrol. Sci. J. 2005, 50, 81–93. [Google Scholar] [CrossRef]
- Sen, R.S.; Balling, R.C. Trends in extreme daily precipitation indices in India. Int. J. Climatol. 2004, 24, 457–466. [Google Scholar] [CrossRef]
- Andrighetti, M.; Zardi, D.; Franceschi, M. History and analysis of the temperature series of Verona (1769–2006). Meteorol. Atmos. Phys. 2009, 103, 267–277. [Google Scholar] [CrossRef]
- Pal, I.; Al-Tabbaa, A. Regional changes in extreme monsoon rainfall deferent and excess in India. Dyn. Atmos. Oceans 2010, 49, 206–214. [Google Scholar] [CrossRef]
- Pal, I.; Al-Tabbaa, A. Long-term changes and variability of monthly extreme temperatures in India. Theor. Appl. Climatol. 2010, 100, 45–56. [Google Scholar] [CrossRef]
- Gosain, A.K.; Rao, S.; Basuray, D. Climate change impact assessment on hydrology of Indian river basins. Curr. Sci. 2006, 90, 346–353. [Google Scholar]
- Kumari, N.; Srivastava, A.; Dumka, U.C. A long-term spatiotemporal analysis of vegetation greenness over the Himalayan Region using Google Earth Engine. Climate 2021, 9, 109. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Society 2012, 93, 485–498. [Google Scholar] [CrossRef]
- Mohanty, M.; Sinha, N.K.; Somasundaram, J.; McDermid, S.S.; Patra, A.K.; Singh, M.; Dwivedi, A.K.; Reddy, K.S.; Rao, C.S.; Prabhakar, M.; et al. Soil carbon sequestration potential in a Vertisol in central India-results from a 43-year long-term experiment and APSIM modeling. Agric. Syst. 2020, 184, 102906. [Google Scholar] [CrossRef]
- Ochsner, T.E.; Cosh, M.H.; Cuenca, R.H.; Dorigo, W.A.; Draper, C.S.; Hagimoto, Y.; Kerr, Y.H.; Larson, K.M.; Njoku, E.G.; Small, E.E.; et al. State of the art in large-scale soil moisture monitoring. Soil Sci. Soc. Am. J. 2013, 77, 1888–1919. [Google Scholar] [CrossRef]
- Dobriyal, P.; Qureshi, A.; Badola, R.; Hussain, S.A. A review of the methods available for estimating soil moisture and its implications for water resource management. J. Hydrol. 2012, 458, 110–117. [Google Scholar] [CrossRef]
- Bogena, H.R.; Herbst, M.; Huisman, J.A.; Rosenbaum, U.; Weuthen, A.; Vereecken, H. Potential of wireless sensor networks for measuring soil water content variability. Vadose Zone J. 2010, 9, 1002–1013. [Google Scholar] [CrossRef]
- Dorigo, W.A.; Wagner, W.; Hohensinn, R.; Hahn, S.; Paulik, C.; Xaver, A.; Gruber, A.; Drusch, M.; Mecklenburg, S.; van Oevelen, P.; et al. The International Soil Moisture Network: A data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci. 2010, 15, 1675–1698. [Google Scholar] [CrossRef]
- Entekhabi, D.; Reichle, R.H.; Koster, R.D.; Crow, W.T. Performance metrics for soil moisture retrieval and application requirements. J. Hydrometeorol. 2010, 11, 832–840. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.P.; Delwart, S.; Cabot, F.; Boutin, J.; Escorihuela, M.J.; Font, J.; Reul, N.; Gruhier, C.; et al. The SMOS Mission: New Tool for Monitoring Key Elements of the Global Water Cycle. Proc. IEEE 2010, 98900, 666–687. [Google Scholar] [CrossRef]
- Mohanty, M.; Sinha, N.K.; Patidar, R.K.; Somasundaram, J.; Chaudhary, R.S.; Hati, K.M.; Sammi Reddy, K.; Prabhakar, M.; Srinivas Rao, C.; Patra, A.K. Assessment of maize (Zea mays L.) productivity and yield gap analysis using simulation modelling in subtropical climate of central India. J. Agrometeorol. 2017, 19, 342–345. [Google Scholar] [CrossRef]
- Wagner, W.; Hahn, S.; Figa, J.; Albergel, C.; de Rosnay, P.; Brocca, L.; Dorigo, W. Operations, challenges, and prospects of satellite-based surface soil moisture data services. In Remote Sensing of Energy Fluxes and Soil Moisture Content; Petropoulos, G.P., Ed.; CRC Press: Boca Raton, FL, USA, 2013; pp. 463–488. [Google Scholar]
- Deng, M.; Meng, X.; Lu, Y.; Li, Z.; Zhao, L.; Hu, Z.; Chen, H.; Shang, L.; Wang, S.; LI, Q. Impact and sensitivity analysis of soil water and heat transfer parameterizations in Community Land Surface Model on the Tibetan Plateau. J. Adv. Model. Earth Syst. 2021, 13, e2021MS002670. [Google Scholar] [CrossRef]
- Albergel, C.; de Rosnay, P.; Balsamo, G.; Isaksen, L.; Muñoz Sabater, J. Soil moisture analyses at ECMWF: Evaluation using global ground-based in situ observations. J. Hydrometeorol. 2021, 13, 1442–1460. [Google Scholar] [CrossRef]
- Liao, K.; Liu, Y.; Zhu, Q. Spatio-temporal variation of near-surface soil water content in China from 1988 to 2016. Soil Use Manag. 2021, 37, 570–583. [Google Scholar] [CrossRef]
- Sathyanadh, A.; Karipot, A.; Ranalkar, M.; Prabhakaran, T. Evaluation of soil moisture data products over Indian region and analysis of spatio-temporal characteristics with respect to monsoon rainfall. J. Hydrol. 2016, 542, 47–62. [Google Scholar] [CrossRef]
- Agrawal, S.; Chakraborty, A. Evaluation of ESACCI satellite soil moisture product using in-situ CTCZ observations over India. J. Earth Syst. Sci. 2020, 129, 129. [Google Scholar] [CrossRef]
- Albergel, C.; Dorigo, W.; Balsamo, G.; Muñoz-Sabater, J.; de Rosnay, P.; Isaksen, L.; Brocca, L.; De Jeu, R.; Wagner, W. Monitoring multi-decadal satellite earth observation of soil moisture products through land surface reanalyses. Remote Sens. Environ. 2013, 138, 77–89. [Google Scholar] [CrossRef]
- Feng, H.; Zhang, M. Global land moisture trends: Drier in dry and wetter in wet over land. Sci. Rep. 2015, 5, 18018. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Shao, M.; Jia, X.; Wei, X.; He, L. Depth persistence of the spatial pattern of soil-water storage along a small transect in the Loess Plateau of China. J. Hydrol. 2015, 529, 685–695. [Google Scholar] [CrossRef]
- Qiu, J.; Gao, Q.; Wang, S.; Su, Z. Comparison of temporal trends from multiple soil moisture data sets and precipitation: The implication of irrigation on regional soil moisture trend. Int. J. Appl. Earth Obs. Geoinf. 2016, 48, 17–27. [Google Scholar] [CrossRef]
- Almendra-Martín, L.; Martínez-Fernández, J.; Piles, M.; González-Zamora, Á.; Benito-Verdugo, P.; Gaona, J. Analysis of soil moisture trends in Europe using rank-based and empirical decomposition approaches. Glob. Planet Chang. 2022, 215, 103868. [Google Scholar] [CrossRef]
- Khaliq, M.N.; Quarda, T.B.M.J.; Gachon, P.; Sushama, L.; St-Hilaire, A. Identification of hydrological trends in the presence of serial and cross correlations: A review of selected methods and their application to annual flow regimes of Canadian rivers. J. Hydrol. 2009, 368, 117–130. [Google Scholar] [CrossRef]
- Huth, R.; Pokorn, L. Parametric versus non-parametric estimates of climatic trends. Theor. Appl. Climatol. 2004, 77, 107–112. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin: London, UK, 1975; Volume 4. [Google Scholar]
- Bandyopadhyay, A.; Bhadra, A.; Raghuwanshi, N.S.; Singh, R. Temporal trends in estimates of reference evapotranspiration over India. J. Hydrol. Eng. 2009, 14, 508–515. [Google Scholar] [CrossRef]
- Subash, N.; RamMohan, H.S.; Sikka, A.K. Decadal frequency and trends of extreme excess/deficit rainfall during the monsoon season over different meteorological subdivisions of India. J. Hydrol. Sci. 2011, 56, 1090–1109. [Google Scholar] [CrossRef]
- Berwal, P.; Murthy, C.S.; Raju, P.V.; Sesha Sai, M.V.R. Geospatial analysis of near-surface soil moisture time series data over Indian region. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 631–637. [Google Scholar] [CrossRef]
- Agricoop, Department of Agriculture, Cooperation & Farmers Welfare, Ministry of Agriculture & Farmers Welfare Government. 2019. Available online: https://agridashboard.dac.gov.in/ (accessed on 30 June 2024).
- Mujumdar, M.; Bhaskar, P.; Ramarao, M.V.S.; Uppara, U.; Goswami, M.; Borgaonkar, H.; Chakraborty, S.; Ram, S.; Mishra, V.; Rajeevan, M.; et al. Droughts and floods. In Assessment of Climate Change over the Indian Region: A Report of the Ministry of Earth Sciences (MOES), Government of INDIA; Springer Nature: Singapore, 2020; pp. 117–141. [Google Scholar]
- Jain, R.; Kishore, P.; Singh, D.K. Irrigation in India: Status, challenges and options. J. Soil Water Conserv. 2019, 18, 354–363. [Google Scholar] [CrossRef]
- GoI. Agricultural Statistics at a Glance; Government of India, Ministry of Agriculture & Farmers Welfare, Department of Agriculture & Farmers Welfare, Directorate of Economics & Statistics: New Delhi, India, 2021.
- Gajbhiye, K.S.; Mandal, C. Agro-ecological zones, their soil resource and cropping systems. In Status of Farm Mechanization in India, Cropping Systems, Status of Farm Mechanization in India; NBSS&LUP: Nagpur, India, 2000; pp. 1–32. [Google Scholar]
- Gruber, A.; Scanlon, T.; van der Schalie, R.; Wagner, W.; Dorigo, W. Evolution of the ESA CCI Soil Moisture climate data records and their underlying merging methodology. Earth Syst. Sci. Data 2019, 11, 717–739. [Google Scholar] [CrossRef]
- Fang, L.; Hain, C.R.; Zhan, X.; Anderson, M.C. An inter-comparison of soil moisture data products from satellite remote sensing and a land surface model. Int. J. Appl. Earth Obs. Geoinf. 2016, 48, 37–50. [Google Scholar] [CrossRef]
- McNally, A.; Shukla, S.; Arsenault, K.R.; Wang, S.; Peters-Lidard, C.D.; Verdin, J.P. Evaluating ESA CCI soil moisture in East Africa. Int. J. Appl. Earth Obs. Geoinf. 2016, 48, 96–109. [Google Scholar] [CrossRef]
- Pai, D.S.; Sridhar, L.; Rajeevan, M.; Sreejith, O.P.; Satbhai, N.S.; Mukhopadhyay, B. Development of a new high spatial resolution (0.25° × 0.25°) Long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam 2014, 65, 1–18. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Rajeevan, M.; Kshirsagar, S.R. Development of High Resolution Daily Gridded Temperature Data Set (1969–2005) for the Indian Region. Atmos. Sci. Let. 2009, 10, 249–254. [Google Scholar] [CrossRef]
- Hadi, S.J.; Tombul, M. Long-term spatiotemporal trend analysis of precipitation and temperature over Turkey. Meteorol. Appl. 2018, 25, 445–455. [Google Scholar] [CrossRef]
- Liou, Y.A.; Mulualem, G.M. Spatio–temporal assessment of drought in Ethiopia and the impact of recent intense droughts. Remote Sens. 2019, 11, 1828. [Google Scholar] [CrossRef]
- Chauhan, A.S.; Singh, S.; Maurya, R.K.S.; Rani, A.; Danodia, A. Spatio-temporal trend analysis and future projections of precipitation at regional scale: A case study of Haryana, India. J. Water Clim. Chang. 2022, 13, 2143–2170. [Google Scholar] [CrossRef]
- Guan, Y.; Gu, X.; Slater, L.J.; Li, J.; Kong, D.; Zhang, X. Spatio-temporal variations in global surface soil moisture based on multiple datasets: Intercomparison and climate drivers. J. Hydrol. 2023, 625, 130095. [Google Scholar] [CrossRef]
- Rani, A.; Sehgal, V.K.; Dhakar, R.; Pragya; Sahoo, R.N.; Chakraborthy, D.; Kaur, R.; Manjaiah, K.; Marwaha, S. Spatio-temporal Analysis of Remote Sensing based Standardized Evaporative Drought Index during kharif Crop Season over India. J. Agric. Phys. 2023, 23, 132–143. [Google Scholar]
- Hijmans, R.J.; Van Etten, J.; Cheng, J.; Mattiuzzi, M.; Sumner, M.; Greenberg, J.A.; Lamigueiro, O.P.; Bevan, A.; Racine, E.B.; Shortridge, A.; et al. Package ‘raster’. R Package 2015, 734, 473. [Google Scholar]
- McLeod, A.I.; McLeod, M.A. Package ‘Kendall’; R Software: London, UK, 2015. [Google Scholar]
- Pohlert, T.; Pohlert, M.T.; Kendall, S. Package ‘trend’. In Title Non-Parametric Trend Tests and Change-Point Detection; R Software: London, UK, 2015. [Google Scholar]
- Longobardi, A.; Villani, P. Trend analysis of annual and seasonal rainfall time series in the Mediterranean area. Int. J. Clim. 2010, 30, 1538–1546. [Google Scholar] [CrossRef]
- Worku, T.; Khare, D.; Tripathi, S.K. Spatiotemporal trend analysis of rainfall and temperature, and its implications for crop production. J. Water Clim. Chang. 2019, 10, 799–817. [Google Scholar] [CrossRef]
- Gadedjisso-Tossou, A.; Adjegan, K.I.; Kablan, A.K.M. Rainfall and temperature trend analysis by Mann–Kendall test and significance for Rainfed Cereal Yields in Northern Togo. Science 2021, 3, 17. [Google Scholar] [CrossRef]
- Spearman, C. General intelligence objectively determined and measured. Am. J. Psychol. 1904, 15, 201–293. [Google Scholar] [CrossRef]
- Wang, T.; Liu, Q.; Franz, T.E.; Li, R.; Lang, Y.; Fiebrich, C.A. Spatial patterns of soil moisture from two regional monitoring networks in the United States. J. Hydrol. 2017, 552, 578–585. [Google Scholar] [CrossRef]
- Zhou, Q.; Sun, Z.; Liu, X.; Wei, X.; Peng, Z.; Yue, C.; Luo, Y. Temporal soil moisture variations in different vegetation cover types in karst areas of southwest China: A plot scale case study. Water 2019, 11, 1423. [Google Scholar] [CrossRef]
- Pai, D.S.; Arti, B.; Sunitha, D.; Madhuri, M.; Badwaik, M.R.; Kundale, A.P.; Sulochana, G.; Mohapatra, M.; Rajeevan, M. Normal dates of onset/progress and withdrawal of southwest monsoon over India. Mausam 2020, 71, 553–570. [Google Scholar]
- Rajeevan, M.; Unnikrishnan, C.K.; Bhate, J.; Niranjan Kumar, K.; Sreekala, P.P. Northeast monsoon over India: Variability and prediction. Meteorol. Appl. 2012, 19, 226–236. [Google Scholar] [CrossRef]
- Laskar, A.H.; Ramesh, R.; Burman, J.; Midhun, M.; Yadava, M.G.; Jani, R.A.; Gandhi, N. Stable isotopic characterization of Nor’westers of southern Assam, NE India. J. Clim. Chang. 2015, 1, 75–87. [Google Scholar] [CrossRef]
- Zheng, Y.; Bourassa, M.A.; Ali, M.M. The impact of rainfall on soil moisture variability in four homogeneous rainfall zones of India during strong, weak, and normal Indian summer monsoons. Water 2022, 14, 2788. [Google Scholar] [CrossRef]
- Varikoden, H.; Revadekar, J.V. Relation between the rainfall and soil moisture during different phases of Indian monsoon. Pure Appl. Geophys. 2018, 175, 1187–1196. [Google Scholar] [CrossRef]
- Guntu, R.K.; Agarwal, A. Spatiotemporal dependence of soil moisture and precipitation over India. J. Hydrol. 2022, 610, 127898. [Google Scholar]
- Praveen, B.; Talukdar, S.; Shahfahad; Mahato, S.; Mondal, J.; Sharma, P.; Islam, A.R.M.T.; Rahman, A. Analyzing trend and forecasting of rainfall changes in India using non-parametrical and machine learning approaches. Sci. Rep. 2020, 10, 10342. [Google Scholar] [CrossRef]
- Dhanagare, D.N. Drought in Maharashtra: Misplaced Priorities, Mismanagement of Water Resources. Econ. Political Wkly. 1992, 27, 1421–1425. Available online: http://www.jstor.org/stable/4398589 (accessed on 30 June 2024).
- Shewale, M.P.; Kumar, S. Climatological features of drought incidences in India. In Meteorological Monograph (Climatology 21/2005); National Climate Centre, Indian Meteorological Department: New Delhi, India, 2005. [Google Scholar]
- Manual for Drought Management; Department of Agriculture, Cooperation and Farmers Welfare, Ministry of Agriculture and Farmers Welfare, Government of India: New Delhi, India, 2016.
- Kumar, V.; Jain, S.K.; Singh, Y. Analysis of long-term rainfall trends in India. Hydrol. Sci. J. 2010, 55, 484–496. [Google Scholar] [CrossRef]
- Guhathakurta, P.; Rajeevan, M. Trends in the rainfall pattern over India. Int. J. Clim. 2008, 28, 1453–1469. [Google Scholar] [CrossRef]
- Singh, R.N.; Sah, S.; Das, B.; Potekar, S.; Chaudhary, A.; Pathak, H. Innovative trend analysis of spatio-temporal variations of rainfall in India during 1901–2019. Theor. Appl. Climatol. 2021, 145, 821–838. [Google Scholar] [CrossRef]
- Oza, M.; Kishtawal, C.M. Trends in Rainfall and Temperature Patterns over North East India. Earth Sci. India 2014, 7, 90–105. [Google Scholar] [CrossRef]
- Patle, G.T.; Libang, A. Trend analysis of annual and seasonal rainfall to climate variability in North-East region of India. J. Nat. Appl. Sci. 2014, 6, 480–483. [Google Scholar] [CrossRef]
- Jaiswal, M.K.; Amin, N. The impact of land use dynamics on the soil erosion in the Panchnoi river basin, northeast India. J. Geogr. Inst. Jovan Cvijic SASA 2020, 70, 1–14. [Google Scholar] [CrossRef]
- Marchang, R. Changing Forest Land Use for Agriculture and Livelihood in North East India; Working Paper (No. 523); Institute for Social and Economic Change: Karnataka, India, 2021. [Google Scholar]
- Chevuturi, A.; Dimri, A.P.; Thayyen, R.J. Climate change over Leh (Ladakh), India. Theor. Appl. Climatol. 2018, 131, 531–545. [Google Scholar] [CrossRef]
- Jain, S.K.; Kumar, V.; Saharia, M. Analysis of rainfall and temperature trends in northeast India. Int. J. Clim. 2013, 33, 968–978. [Google Scholar] [CrossRef]
- Joiner, J.; Yoshida, Y.; Anderson, M.; Holmes, T.; Hain, C.; Reichle, R.; Koster, R.; Middleton, E.; Zeng, F.W. Global relationships among traditional reflectance vegetation indices (NDVI and NDII), evapotranspiration (ET), and soil moisture variability on weekly timescales. Remote Sens. Environ. 2018, 219, 339–352. [Google Scholar] [CrossRef] [PubMed]
AER No. | Agroecological Region | Geographical Distribution | Brief Characteristics | Major Crops |
---|---|---|---|---|
AER-1 | Cold arid ecoregion with shallow skeletal soils | Northwestern Himalayan region covering Ladakh and Gilgit districts | Mild summers and severe winters with a mean annual temperature of less than 8 °C and a mean annual rainfall of less than 15 cm, acidic soil moisture, and cryic soil temperature regime, and an LGP < 90 days | Vegetables, millet, and fodder |
AER-2 | Hot arid ecoregion with desert and saline soils | Western plain comprising Kachchh and part of the Kathiawar Peninsula | Hot summers and cool winters with mean annual rainfall less than 40 cm, LGP < 90 days, aridic soil moisture, and a hyperthermic soil temperature regime | Pearl millet and fodder |
AER-3 | Hot arid ecoregion with red and black soils | Some parts of the Deccan Plateau | Hot and dry summers and mild winters with mean annual rainfall ranging from 40 to 50 cm, LGP < 90 days, aridic-ustic soil moisture, and isohyperthermic soil temperature regimes | Pearl millet, sorghum, and safflower |
AER-4 | Hot semi-arid ecoregion with alluvium-derived soils | Some areas of Gujarat, the northern plains and the Central Highlands | Hot and dry summers and cool winters with annual rainfall ranging from 50 to 100 cm, LGP ranging from 90 to 150 days, typic ustic soil moisture, and a hyperthermic soil temperature regime | Wheat, paddy, maize, and pulses |
AER-5 | Hot semi-arid ecoregion with medium and deep black soils | Some areas of the Central Highlands (Malwa), Gujarat Plains and Kathiawar peninsula, western Madhya Pradesh, southeastern Rajasthan and Gujarat | Hot and wet summer and dry winter with annual rainfall ranging from 50 to 100 cm, LGP ranging from 90 to 150 days, typic ustic soil moisture, and hyperthermic and isohyperthermic soil temperature regimes | Sorghum, pearl millet, pigeon pea, groundnut, soybeans, maize, pulses, and wheat |
AER-6 | Hot semi-arid ecoregion with shallow and medium (dominant) black soils | Some parts of the Deccan Plateau | Hot and humid summers and mild and dry winters with annual rainfall ranging from 60 to 100 cm, LGP of 90–150 days, loamy and clayey soils with ustic soil moisture, and isohyperthermic soil temperature regimes | Sorghum, pigeon pea, pearl millet, safflower, sunflower, cotton, and groundnut |
AER-7 | Hot semi-arid ecoregion with red and black soils | Some parts of the Deccan Plateau (Telangana) and Eastern Ghats of Andhra Pradesh | Hot and moist summers and mild and dry winters with an annual rainfall of 60–110 cm, LGP of 90–150 days, ustic soil moisture, and isohyperthermic soil temperature regimes | Sorghum, cotton, pigeon pea, paddy, groundnut, castor, sunflower, safflower, and oilseeds |
AER-8 | Hot semi-arid ecoregion with red loamy soils | Some parts of the Eastern Ghats, southern parts of the Deccan Plateau, Tamil Nadu Uplands, and western Karnataka | Hot and dry summer and mild winter with an annual rainfall of 60–100 cm, LGP of 90–150 days, ustic soil moisture, and isohyperthermic soil temperature regimes | Millet, pulses, groundnut, sorghum, safflower, paddy, sugarcane, and cotton |
AER-9 | Hot subhumid (dry) ecoregion with alluvium-derived soils | Northern Indo-Gangetic Plains | Hot summers and cool winters with an annual rainfall of 100–120 cm, LGP of 150–180 days, deep and loamy alluvial soils with ustic soil moisture, and a hyperthermic soil temperature regime | Paddy, maize, barley, pigeon pea, jute, wheat, mustard, lentil, sugarcane, and cotton |
AER-10 | Hot subhumid ecoregion with red and black soils | Malwa Plateau and Bundelkhand Uplands of the Central Highlands | Hot summers and mild winters with an annual rainfall of 100–150 cm, LGP of 150–180 days, deep black soils interspersed with patches of red soils with typic ustic soil moisture, and hyperthermic soil temperature regimes | Paddy, sorghum, pigeon pea, soybean, gram, wheat, and vegetables |
AER-11 | Hot subhumid ecoregion with red and yellow soils | Chhattisgarh region of the eastern plateau | Hot summers and cool winters with an annual rainfall of 120–160 cm, LGP of 150–180 days, deep loamy, non-calcareous, neutral to slightly acidic soils, ustic soil moisture, and hyperthermic soil temperature regimes | Paddy, millet, pulses, and wheat |
AER-12 | Hot subhumid ecoregion with red and lateritic soils | Some parts of the Chhota Nagpur region of the Eastern Plains and Eastern Ghats | Hot summers and cool winters with an annual rainfall of 100–160 cm, LGP of 150–210 days, fine loamy to clayey, non-calcareous, slightly to moderately acidic soils with low cation exchange capacity, typic ustic soil moisture, and hyperthermic soil temperature regimes | Paddy, pulses, groundnut, and wheat |
AER-13 | Hot subhumid (moist) ecoregion with alluvium-derived soils | Some parts of the Eastern Plains | Hot, wet summers and cool, dry winters with an annual rainfall of 140–180 cm, LGP of 180–210 days, gently sloping alluvium-derived soils, udic and ustic soil moisture regimes, and a hyperthermic soil temperature regime | Paddy, wheat, maize, pulses, groundnut, sugarcane, and vegetables |
AER-14 | Warm subhumid to humid with the inclusion of a per-humid ecoregion with brown forest and podzolic soils | Western Himalayas | Mild summers and cold winters with an annual rainfall of 100–200 cm, brown forest and podzolic soils, and udic or udic-ustic soil moisture regimes | Wheat, millet, maize, paddy, and apples |
AER-15 | Hot subhumid (moist) to humid ecoregion with alluvium-derived soils | Bengal Basin and Assam Plain | Hot summers and mild to moderately cool winters with an annual rainfall of 140–160 cm in the Ganga Plain and 180–200 cm in Tripura and Teesta-Brahmaputra Plains, LGP greater than 210 days, slightly to strongly acidic soils with udic-ustic soil moisture and a hyperthermic soil temperature regime | Paddy, jute, pulses, oilseeds, tea, and horticultural crops like pineapple, citrus, and banana |
AER-16 | Warm per-humid ecoregion with brown and red hill soils | Some parts of the Eastern Himalayas | Warm summer and cool winter with an annual rainfall of more than 200 cm, LGP of more than 270 days, deep and organic matter-rich brown forest soils, and udic soil moisture regime, with soil temperature regimes varying from thermic, mesic to hyperthermic based on the elevation | Jhum or shifting cultivation with mixed crops like millet, potato, maize, paddy, mustard, sesamum, pulses, plantation, and horticultural crops |
AER-17 | Warm per-humid ecoregion with red and lateritic soils | Northeastern hills | Warm summers and cool winters with an annual rainfall of 200–300 cm, LGP of more than 270 days, shallow to very deep, loamy, red and lateritic and red and yellow soils, udic soil moisture regime, and hyperthermic to thermic soil temperature regimes based on topography | Jhum or shifting cultivation with paddy, millet, maize, jute, and potato, plantation, and horticultural crops |
AER-18 | Hot subhumid to semi-arid ecoregion with coastal alluvium-derived soils | Eastern Coastal Plains | Annual rainfall of 90–110 cm, most of which is received during October to December, LGP of 90–150 days, and an isohyperthermic soil temperature regime | Coconut, paddy, black gram, lentil, sunflower, and groundnut |
AER-19 | Hot humid per-humid ecoregion with red, lateritic, and alluvium-derived soils | Some parts of the Western Ghats and coastal plains | Hot and humid summers and warm winters with an annual rainfall of more than 200 cm, LGP of 150–210 days, red and lateritic soils with udic soil moisture, and an isohyperthermic soil temperature regime | Paddy, tapioca, coconut, and spices |
AER-20 | Hot humid/per-humid island ecoregion with red loamy and sandy soils | Andaman and Nicobar Islands, and Lakshadweep Islands | Tropical climate with little difference between mean summer and winter temperatures and annual rainfall ranging from 160 to 300 cm, LGP of more than 210 days, red loamy soils on Andaman and Nicobar Islands and calcareous and sandy soils on Lakshadweep Islands with udic soil moisture and an isohyperthermic soil temperature regime | Paddy, coconut, areca nut, and oil palm |
Input Parameter | Dataset Name | Data Source | Temporal Period | Spatial Resolution | Temporal Resolution |
---|---|---|---|---|---|
Near-surface SWC | ESA CCI SM (v 8.1) | https://www.esa-soilmoisture-cci.org/ (accessed on 15 June 2024) | 1979 to 2022 | 0.25° | Daily |
Rainfall | IMD gridded rainfall | IMD [55] | 1979 to 2022 | 0.25° | Daily |
Maximum temperature | IMD maximum temperature | IMD [56] | 1979 to 2022 | 1° | Daily |
Minimum temperature | IMD minimum temperature | IMD [56] | 1979 to 2022 | 1° | Daily |
Actual evapotranspiration | MODIS MOD16A2GF | NASA | 2000 to 2022 | 500 m | 8-day |
NDVI | AVHRR and MODIS | https://zenodo.org/doi/10.5281/zenodo.4305974 (accessed on 15 June 2024) | 1982 to 2019 | 5 km | Monthly |
MODIS MOD13C2 | NASA | 2020 to 2022 | 5 km | Monthly |
AER No. | January | February | March | April | May | June | July | August | September | October | November | December | Annual |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AER-1 | - | - | −3.14 × 10−3 | −1.19 × 10−2 | −8.47 × 10−3 | 1.17 × 10−3 | 1.14 × 10−3 | 1.99 × 10−3 | −9.70 × 10−4 | −3.24 × 10−3 | −3.04 × 10−3 | 1.61 × 10−3 | 6.50 × 10−4 |
AER-2 | 3.10 × 10−4 | −8.00 × 10−5 | −3.00 × 10−5 | 1.00 × 10−5 | 5.00 × 10−5 | 3.80 × 10−4 | 1.90 × 10−4 | 3.00 × 10−5 | 6.70 × 10−4 | 2.30 × 10−4 | 2.10 × 10−4 | 2.80 × 10−4 | 9.00 × 10−5 |
AER-3 | −1.00 × 10−5 | 8.00 × 10−5 | 2.00 × 10−5 | −1.00 × 10−4 | 3.00 × 10−4 | 1.00 × 10−4 | 1.10 × 10−4 | 1.10 × 10−4 | 3.70 × 10−4 | 7.40 × 10−4 | 3.70 × 10−4 | 6.00 × 10−4 | 2.00 × 10−5 |
AER-4 | 2.30 × 10−4 | −9.00 × 10−5 | −1.00 × 10−5 | 0.00 × 100 | 1.20 × 10−4 | 1.00 × 10−4 | 2.10 × 10−4 | −1.60 × 10−4 | 2.00 × 10−4 | −2.00 × 10−5 | 3.30 × 10−4 | 3.90 × 10−4 | 5.00 × 10−5 |
AER-5 | 2.00 × 10−4 | 1.70 × 10−4 | 7.00 × 10−5 | 2.00 × 10−5 | 2.00 × 10−5 | 3.40 × 10−4 | 5.80 × 10−4 | 1.20 × 10−4 | 8.40 × 10−4 | 6.50 × 10−4 | 6.00 × 10−4 | 5.40 × 10−4 | 2.60 × 10−4 |
AER-6 | 1.70 × 10−4 | 1.40 × 10−4 | 8.00 × 10−5 | 0.00 × 100 | 5.00 × 10−5 | 5.30 × 10−4 | 4.90 × 10−4 | 3.00 × 10−4 | 4.80 × 10−4 | 8.30 × 10−4 | 4.60 × 10−4 | 4.90 × 10−4 | 1.80 × 10−4 |
AER-7 | 1.80 × 10−4 | 7.00 × 10−5 | −6.00 × 10−5 | −1.40 × 10−4 | −1.90 × 10−4 | 2.60 × 10−4 | 1.00 × 10−4 | −6.00 × 10−5 | 2.60 × 10−4 | 3.40 × 10−4 | 1.10 × 10−4 | 3.90 × 10−4 | −6.00 × 10−5 |
AER-8 | 1.70 × 10−4 | 7.00 × 10−5 | 7.00 × 10−5 | −3.00 × 10−5 | 4.30 × 10−4 | −1.70 × 10−4 | −7.00 × 10−5 | 1.50 × 10−4 | 2.80 × 10−4 | 5.70 × 10−4 | 4.60 × 10−4 | 8.20 × 10−4 | 5.00 × 10−5 |
AER-9 | 3.30 × 10−4 | −1.30 × 10−4 | −1.10 × 10−4 | −1.10 × 10−4 | 1.30 × 10−4 | −1.90 × 10−4 | 1.20 × 10−4 | −2.60 × 10−4 | −1.30 × 10−4 | 1.00 × 10−4 | 2.80 × 10−4 | 4.60 × 10−4 | 1.00 × 10−5 |
AER-10 | 1.10 × 10−4 | 7.00 × 10−5 | 1.40 × 10−4 | 0.00 × 100 | 2.00 × 10−5 | 3.00 × 10−4 | 2.20 × 10−4 | −4.00 × 10−5 | 2.40 × 10−4 | 3.00 × 10−4 | 5.50 × 10−4 | 4.30 × 10−4 | 1.10 × 10−4 |
AER-11 | 1.90 × 10−4 | 2.00 × 10−5 | 9.00 × 10−5 | −1.20 × 10−4 | 1.70 × 10−4 | 2.30 × 10−4 | 2.70 × 10−4 | −2.00 × 10−5 | 5.00 × 10−5 | 3.90 × 10−4 | 3.30 × 10−4 | 3.30 × 10−4 | 9.00 × 10−5 |
AER-12 | 9.00 × 10−5 | −7.00 × 10−5 | −1.00 × 10−4 | −1.30 × 10−4 | 7.00 × 10−5 | −4.00 × 10−5 | 2.20 × 10−4 | 1.80 × 10−4 | 2.00 × 10−4 | 3.30 × 10−4 | 1.00 × 10−4 | 2.40 × 10−4 | 3.00 × 10−5 |
AER-13 | 2.40 × 10−4 | −1.40 × 10−4 | −7.00 × 10−5 | −2.00 × 10−5 | 2.00 × 10−4 | −2.00 × 10−5 | 2.40 × 10−4 | −6.00 × 10−5 | −1.90 × 10−4 | 1.20 × 10−4 | 4.50 × 10−4 | 3.10 × 10−4 | 2.00 × 10−5 |
AER-14 | −1.23 × 10−3 | −2.00 × 10−4 | −8.40 × 10−4 | −1.42 × 10−3 | −5.30 × 10−4 | −1.30 × 10−4 | −2.00 × 10−5 | 2.40 × 10−4 | 4.90 × 10−4 | −3.70 × 10−4 | −8.10 × 10−4 | 4.60 × 10−4 | 7.00 × 10−5 |
AER-15 | 6.00 × 10−5 | 2.40 × 10−4 | −2.40 × 10−4 | −1.60 × 10−4 | −7.00 × 10−5 | −1.60 × 10−4 | 5.00 × 10−5 | 3.00 × 10−5 | −5.00 × 10−5 | −4.00 × 10−5 | −6.00 × 10−4 | 2.00 × 10−5 | −8.00 × 10−5 |
AER-16 | −1.09 × 10−3 | −4.70 × 10−4 | −1.06 × 10−3 | −5.10 × 10−4 | 1.20 × 10−4 | 1.90 × 10−4 | 5.00 × 10−5 | −2.00 × 10−5 | 0.00 × 100 | 1.30 × 10−4 | −2.60 × 10−4 | −7.10 × 10−4 | −1.30 × 10−4 |
AER-17 | 1.10 × 10−4 | −9.00 × 10−5 | −6.00 × 10−4 | −2.60 × 10−4 | 2.00 × 10−4 | 1.30 × 10−4 | 1.40 × 10−4 | 8.00 × 10−5 | 5.00 × 10−5 | 2.10 × 10−4 | 2.20 × 10−4 | −3.00 × 10−5 | −6.00 × 10−5 |
AER-18 | 9.30 × 10−4 | 3.90 × 10−4 | 1.60 × 10−4 | −1.20 × 10−4 | −3.00 × 10−5 | −6.80 × 10−4 | −9.00 × 10−5 | 4.60 × 10−4 | 2.70 × 10−4 | −1.00 × 10−5 | 7.90 × 10−4 | 1.95 × 10−3 | 2.00 × 10−5 |
AER-19 | 4.10 × 10−4 | 1.40 × 10−4 | 2.60 × 10−4 | 1.20 × 10−4 | 3.50 × 10−4 | 4.70 × 10−4 | 4.00 × 10−4 | 2.90 × 10−4 | 4.20 × 10−4 | 3.60 × 10−4 | 3.10 × 10−4 | 6.80 × 10−4 | 1.30 × 10−4 |
India | 1.30 × 10−4 | 3.00 × 10−6 | −7.00 × 10−5 | −1.40 × 10−4 | 4.00 × 10−5 | 1.70 × 10−4 | 2.40 × 10−4 | 1.20 × 10−4 | 2.60 × 10−4 | 2.50 × 10−4 | 2.50 × 10−4 | 4.00 × 10−4 | 0.9 × 10−4 |
AER No. | Rainfall | Temperature | Actual Evapotranspiration | NDVI |
---|---|---|---|---|
AER-1 | 0.09 | −0.21 | 0.36 | −0.06 |
AER-2 | 0.67 | 0.19 | 0.65 | 0.43 |
AER-3 | 0.79 | −0.19 | 0.83 | 0.72 |
AER-4 | 0.65 | 0.07 | 0.72 | 0.49 |
AER-5 | 0.78 | 0.11 | 0.87 | 0.71 |
AER-6 | 0.80 | −0.10 | 0.88 | 0.75 |
AER-7 | 0.77 | −0.21 | 0.81 | 0.76 |
AER-8 | 0.72 | −0.30 | 0.70 | 0.66 |
AER-9 | 0.62 | 0.21 | 0.73 | 0.56 |
AER-10 | 0.77 | 0.09 | 0.86 | 0.73 |
AER-11 | 0.75 | 0.13 | 0.88 | 0.80 |
AER-12 | 0.78 | 0.17 | 0.83 | 0.83 |
AER-13 | 0.63 | 0.29 | 0.76 | 0.55 |
AER-14 | 0.47 | 0.26 | 0.54 | 0.37 |
AER-15 | 0.74 | 0.63 | 0.79 | 0.72 |
AER-16 | 0.59 | 0.73 | 0.56 | 0.65 |
AER-17 | 0.68 | 0.80 | 0.55 | 0.85 |
AER-18 | 0.75 | −0.15 | 0.67 | 0.56 |
AER-19 | 0.78 | −0.26 | 0.39 | 0.73 |
India | 0.70 | 0.12 | 0.74 | 0.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rani, A.; Sinha, N.K.; Jyoti, B.; Kumar, J.; Kumar, D.; Mishra, R.; Singh, P.; Mohanty, M.; Jayaraman, S.; Chaudhary, R.S.; et al. Spatiotemporal Variations in Near-Surface Soil Water Content across Agroecological Regions of Mainland India: 1979–2022 (44 Years). Remote Sens. 2024, 16, 3108. https://doi.org/10.3390/rs16163108
Rani A, Sinha NK, Jyoti B, Kumar J, Kumar D, Mishra R, Singh P, Mohanty M, Jayaraman S, Chaudhary RS, et al. Spatiotemporal Variations in Near-Surface Soil Water Content across Agroecological Regions of Mainland India: 1979–2022 (44 Years). Remote Sensing. 2024; 16(16):3108. https://doi.org/10.3390/rs16163108
Chicago/Turabian StyleRani, Alka, Nishant K. Sinha, Bikram Jyoti, Jitendra Kumar, Dhiraj Kumar, Rahul Mishra, Pragya Singh, Monoranjan Mohanty, Somasundaram Jayaraman, Ranjeet Singh Chaudhary, and et al. 2024. "Spatiotemporal Variations in Near-Surface Soil Water Content across Agroecological Regions of Mainland India: 1979–2022 (44 Years)" Remote Sensing 16, no. 16: 3108. https://doi.org/10.3390/rs16163108