A Remote-Sensing-Driven System for Mining Marine Spatiotemporal Association Patterns
Abstract
:1. Introduction
2. System Architecture
- To offer a set of tools for dealing with different data types (e.g., geographical objects, geographical events, and geographical processes).
- To explore the association patterns in one or more marine environmental parameters.
- To explore the co-location association patterns among different marine environmental parameters, and the regional association patterns among different sea areas.
- To offer a series of flexible visualization components for displaying marine association patterns from global and regional scales to a detailed view.
3. Marine Remote Sensing Image Preprocessing and Mining Database
3.1. Image Preprocessing
3.2. Extraction of Marine Information
- Grid pixel: A grid pixel is the basic unit of a raster image; it represents the original image information at a specified row and column. RSMapMining develops a spatial cutting tool to obtain the grid pixels of any sea area, and stores them in raster format.
- Marine object: An object represents a common attribute or behavior with a precise and “crisp” spatial location and extent [32]. Object-based approaches use homogeneous regions from image segmentation. RSMapMining integrates an ENSO-oriented cluster-based method to extract the sensitive marine regions [33] and store them in vector format.
- Marine event: An “event” is defined as a significant occurrence that results in both the creation and destruction of an object [34]. Multi-temporal images can be represented as a sequence of raster snapshots that are used to extract a sequence of values for each region at different intervals that define an event or process. RSMapMining develops a statistical algorithm to extract a marine event, and stores its spatial coverage as a vector format and the logical relationship as a table.
- Marine process: A “process” is defined as a significant event with an evolution from production via development to death [35]. Generally, such processes occur in sensitive marine regions. RSMapMining adopts the concept of the marine spatiotemporal process to obtain a marine sensitive region, and store it according to the spatiotemporal process organization model [36].
4. Spatiotemporal Association Pattern Mining Module
- If MIQarma succeeds, it returns true; if not, it returns false.
- The first input parameter, MiningTransactionTable, has different table structures that are defined by different mining strategies (i.e., grid pixel-based, object-based, event-based, or process-based).
- The second input parameter, GeographicalDataType, is an enumeration to represent the geographical data type corresponding to the different mining strategies: 0 denotes grid pixel data; 1, object data; 2, event data; and 3, process data.
- The output parameter, AssociationPatternTable, stores the mined results in a similar table structure consisting of spatial information, temporal information, an antecedent and consequent of association attributes, and evaluation indicators.
5. Knowledge Visualization
- Cascading representation tree: This component represents an overview at large scale, showing the locations where marine environmental parameters are more interrelated, the parameters involved, and which parameters are causes or induced.
- Two-dimensional thematic map: This component is designed to identify where, how, and when one marine environmental parameter affects or responds to other parameters. The relevant parameters (i.e., the antecedent and consequent) are determined by the user through an interface.
- Table: The ordering of association patterns row-by-row has each row representing one piece of association knowledge.
- Mosaic: This component represents detailed association knowledge.
6. Case Study of Marine Spatiotemporal Association Patterns in the Northwestern Pacific Ocean
6.1. Remote Sensing Images and Databases
Product | Source | Timespan | Temporal Resolution | Spatial Coverage | Spatial Resolution | |
---|---|---|---|---|---|---|
1 | SST | NOAA/PSD | December 1981–December 2014 | Monthly | Global | 1° |
2 | Chl-a | SeaWifs | September1997–November 2010 | Monthly | Global | 9 km |
MODIS | July 2002–December 2014 | Monthly | Global | 4 km | ||
3 | SSP | TRMM | January 1998–December 2014 | Monthly | Global | 0.25° |
4 | SSW | CCMP | July 1987–June 2014 | Monthly | Global | 0.25° |
5 | SLA | AVISO | December 1992–June 2014 | Monthly | Global | 0.25° |
6 | ENSO | MEI | January 1950–December 2014 | Monthly | - | - |
6.2. Methods and Results
PatternNo | SpaceIndex | Association Pattern | Support (%) | Confidence (%) | Lift |
---|---|---|---|---|---|
3530 | (0°, 178°E) | ENSO [–2,0] -> SSTA [–2,0] | 15.00 | 77.14 | 3.31 |
3536 | (0°, 178°E) | ENSO [–2,0] -> SSPA [–1,0] | 16.11 | 82.86 | 2.07 |
3543 | (0°, 178°E) | SLAA [2,0] -> CHLA [–2,0] | 11.67 | 65.62 | 2.81 |
3548 | (0°, 178°E) | ENSO [–2,0] -> SSTA [–2,0] SSPA [–1,0] | 14.44 | 76.47 | 3.93 |
Attrcn[qcn, tn](s%, c%, l)
6.3. Process of Visualization
6.4. Analysis of Association Knowledge
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Yang, J.; Gong, P.; Fu, R.; Zhang, M.H.; Chen, J.M.; Liang, S.L.; Xu, B.; Shi, J.C.; Dickinson, R. The role of satellite remote sensing in climate change studies. Nat. Clim. Chang. 2013, 3, 875–883. [Google Scholar] [CrossRef]
- Du, P.J.; Liu, P.; Xia, J.S.; Li, F.; Liu, S.C.; Tan, K.; Cheng, L. Remote sensing image interpretation for urban environment analysis: Methods, system and examples. Remote Sens. 2014, 6, 9458–9474. [Google Scholar] [CrossRef]
- McPhaden, M.J.; Zebiak, S.E.; Glantz, M.H. ENSO as an integrating concept in earth science. Science 2006, 314, 1740–1745. [Google Scholar] [CrossRef] [PubMed]
- Couto, A.B.; Holbrook, N.J.; Maharaj, A.M. Unravelling Eastern Pacific and Central Pacific ENSO contributions in South Pacific Chlorophyll-a variability through remote sensing. Remote Sens. 2013, 5, 4067–4087. [Google Scholar] [CrossRef]
- Hollmann, R.; Merchant, C.R.; Saunders, R.; Downy, C.; Buchwitz, M.; Cazenave, A.; Chuvieco, E.; Defourny, P.; de Leeuw, G.; Forsberg, R.; et al. The ESA Climate Change Initiative: Satellite data records for essential climate variables. Bull. Am. Meteorol. Soc. 2013, 94, 1541–1552. [Google Scholar] [CrossRef]
- Hannachi, A.; Jolliffe, I.T.; Stephenson, D.B. Empirical orthogonal functions and related techniques in atmospheric science: A review. Int. J. Climatol. 2007, 27, 1119–1152. [Google Scholar] [CrossRef]
- Smith, T.M.; Arkin, P.A.; Sapiano, M.R.P. Reconstruction of near-global annual precipitation using correlations with sea surface temperature and sea level pressure. J. Geophys. Res. 2009, 114, D12107. [Google Scholar] [CrossRef]
- Cherry, S. Some comments on singular value decomposition analysis. J. Clim. 1997, 10, 1759–1761. [Google Scholar] [CrossRef]
- Kumar, V. Discovery of patterns in global earth science data using data mining. Lect. Notes Comput. Sci. 2010, 6118. [Google Scholar] [CrossRef]
- Hoffman, F.M.; Larson, W.J.; Mills, R.T.; Brooks, B.G.J.; Ganguly, A.R.; Hargrove, W.W.; Huang, J.; Kumar, J.; Vatsavai, R.R. Data Mining in Earth System Science (DMESS 2011). Proc. Comput. Sci. 2011, 4, 1450–1455. [Google Scholar] [CrossRef]
- Saulquin, B.; Fablet, R.; Mercier, G.; Demarcq, H.; Mangin, A.; Fantond’Andon, O.H. Multiscale Event-Based Mining in Geophysical Time Series: Characterization and Distribution of Significant Time-Scales in the Sea Surface Temperature Anomalies Relatively to ENSO Periods from 1985 to 2009. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3543–3552. [Google Scholar] [CrossRef]
- Lee, J.W.; Lee, Y.J. A knowledge discovery framework for spatiotemporal data mining. Int. J. Inf. Proc. Syst. 2006, 2, 124–129. [Google Scholar]
- Bertolotto, M.; DiMartino, S.; Ferrucci, F.; Kechadi, T. Towards a framework for mining and analysing spatio-temporal datasets. Int. J. Geogr. Inf. Sci. 2007, 21, 895–906. [Google Scholar] [CrossRef]
- Compieta, P.; Martino, S.D.; Bertolotto, M.; Ferrucci, F.; Kechadi, T. Exploratory spatio-temporal data mining and visualization. J. Vis. Lang. Comput. 2007, 18, 255–279. [Google Scholar] [CrossRef]
- Fernando, B.; Cubero, J.C.; Jiménez, A. The design and use of the TMiner component-based data mining framework. Expert Syst. Appl. 2009, 36, 7882–7887. [Google Scholar]
- Xue, C.J.; Song, W.J.; Qin, L.J.; Dong, Q.; Wen, X.Y. A spatiotemporal mining framework for abnormal association patterns in marine environments with a time series of remote sensing images. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 105–114. [Google Scholar] [CrossRef]
- Su, F.Z.; Zhou, C.H.; Lyne, V.; Du, Y.Y.; Shi, W.Z. A data mining approach to determine the spatio-temporal relationship between environmental factors and fish distribution. Ecol. Model. 2004, 174, 421–431. [Google Scholar] [CrossRef]
- Huang, P.Y.; Kao, L.J.; Sandnes, F.E. Efficient mining of salinity and temperature association rules from ARGO data. Expert Syst. Appl. 2008, 35, 59–68. [Google Scholar] [CrossRef]
- Xue, C.J.; Song, W.J.; Qin, L.J.; Dong, Q. A mutual-information-based mining method for marine abnormal association rules. Comput. Geosci. 2015, 76, 121–129. [Google Scholar]
- Li, L.W.; Xue, C.J.; Liu, J.; Wang, Z.J.; Qin, L.J. Raster-based visualization of abnormal association patterns in marine environments. J. Appl. Remote Sens. 2014, 8, 083615. [Google Scholar] [CrossRef]
- Srikant, R.; Agrawal, R. Mining quantitative association rules in large relational tables. In Proceeding of the ACM SIGMOD Conference on Management of Data, Montreal, QC, Canada, 4–6 June 1996; Volume 25, pp. 1–12.
- Agrawal, R.; Srikant, R. Fast algorithms for mining association rules. In Proceeding of the 20th International Conference on Very Large Databases, Santiago de Chile, Chile, 12–15 September 1994; pp. 407–419.
- Wu, E. Spatio-Temporal Data Mining and Analysis of Precipitation Extremes. Ph.D. Thesis, University of Sydney, Sydney, Australia, 2008. [Google Scholar]
- Xue, C.J.; Dong, Q.; Fan, X. Spatiotemporal association patterns of multiple parameters in the northwestern Pacific Ocean and their relationships with ENSO. Int. J. Remote Sens. 2014, 35, 4467–4483. [Google Scholar] [CrossRef]
- Datcu, M.; Daschiel, H.; Pelizzari, A.; Marco, Q.; Annalisa, G.; Andrea, C.; Marco, P.; Klaus, S.; Pier, G.M.; Sergio, D.E. Information mining in remote sensing image archives: System concepts. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2923–2936. [Google Scholar] [CrossRef]
- Zhang, J.T.; Gruenwald, L.; Michael, G. VDM-RS: A visual data mining system for exploring and classifying remotely sensed images. Comput. Geosci. 2009, 35, 1827–1836. [Google Scholar] [CrossRef]
- Julea, N.; Meger, P.; Bolon, C.; Rigotti, M.P.; Doin, C.L.; Trouve, E.; Lazarescu, V.N. Unsupervised spatiotemporal mining of satellite image time series using grouped frequent sequential patterns. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1417–1430. [Google Scholar] [CrossRef]
- Korting, T.S.; Fonseca, L.M.G.; Camara, G. GeoDMA—Geographic Data Mining Analyst. Comput. Geosci. 2013, 57, 133–145. [Google Scholar] [CrossRef]
- Romani, L.A.S.; de Avila, A.M.H.; Chino, D.Y.T.; Zullo, J.; Chbeir, R.; Traina, A.J.M.; Traina, A.J.M. A New Time Series Mining Approach Applied to Multitemporal Remote Sensing Imagery. IEEE Trans. Geosci. Remote Sens. 2013, 51, 140–150. [Google Scholar] [CrossRef]
- Guo, H.D. Space_based observation for sensitive factors of global change. Bull. Chin. Acad. Sci. 2009, 23, 226–229. [Google Scholar]
- GCOS. Oceans. In Systematic Observation Requirements for Satellite-Based Products for Climate; 2011 Update; GCOS Report 154; WMO: Geneva, Switzerland, 2011; pp. 43–58. [Google Scholar]
- Egenhofer, M.J.; Glasgow, J.; Gunther, O.; Herring, J.R.; Peuquet, D.J. Progress in computational methods for representing geographical objects. Int. J. Geogr. Inf. Sci. 1999, 13, 775–796. [Google Scholar] [CrossRef]
- Xue, C.J.; Dong, Q.; Qin, L.J. A cluster-based method for marine sensitive object extraction and representation. J. Chin. Ocean Univ. 2015, 14, 1–9. [Google Scholar]
- Yuan, M. Representing complex geographic penomena in GIS. Cartogr. Geogr. Inf. Sci. 2001, 28, 83–96. [Google Scholar] [CrossRef]
- Su, F.Z.; Zhou, C.H. A Framework for process geographical information system. Geogr. Res. 2006, 25, 477–484. [Google Scholar]
- Xue, C.J.; Dong, Q.; Xie, J. Marine spatio-temporal process semantics and its applications-taking the ENSO process and Chinese rainfall anomaly as an example. Acta Oceanol. Sin. 2012, 33, 16–24. [Google Scholar] [CrossRef]
- Tsay, Y.J.; Chiang, J.Y. CBAR: An efficient method for mining association rules. Knowl. Based Syst. 2005, 18, 99–105. [Google Scholar] [CrossRef]
- Hoell, A.; Funk, C.; Barlow, M. The regional forcing of Northern hemisphere drought during recent warm tropical west Pacific Ocean La Niña events. Clim. Dyn. 2014, 11–12, 3289–3311. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, C.; Dong, Q.; Li, X.; Fan, X.; Li, Y.; Wu, S. A Remote-Sensing-Driven System for Mining Marine Spatiotemporal Association Patterns. Remote Sens. 2015, 7, 9149-9165. https://doi.org/10.3390/rs70709149
Xue C, Dong Q, Li X, Fan X, Li Y, Wu S. A Remote-Sensing-Driven System for Mining Marine Spatiotemporal Association Patterns. Remote Sensing. 2015; 7(7):9149-9165. https://doi.org/10.3390/rs70709149
Chicago/Turabian StyleXue, Cunjin, Qing Dong, Xiaohong Li, Xing Fan, Yilong Li, and Shuchao Wu. 2015. "A Remote-Sensing-Driven System for Mining Marine Spatiotemporal Association Patterns" Remote Sensing 7, no. 7: 9149-9165. https://doi.org/10.3390/rs70709149