Forward Scatter Radar for Air Surveillance: Characterizing the Target-Receiver Transition from Far-Field to Near-Field Regions
Abstract
:1. Introduction
2. Methods
2.1. Theoretical Background
2.2. Electromagnetic Modeling
3. Results
3.1. Far-Field and Near-Field Forward Scattering
3.2. Model Sensitivity
4. Discussion
4.1. Transition from Far-Field to Near-Field
4.2. Effect of the Target Size
4.3. Effect of the Trajectory
5. Conclusions
Author Contributions
Conflicts of Interest
Abbreviations
BL | baseline |
BP | Babinet’s principle |
CAD | computer-aided design |
CW | continuous wave |
EM | electromagnetic |
FF | far-field |
FS | forward scattering |
FS-CS | forward-scatter cross-section |
FSR | forward scatter radar |
NF | near-field |
PEC/PMC | perfect electric conductor/perfect magnetic conductor |
PO | physical optics |
PTD | physical theory of diffraction |
RCS | radar cross-section |
TEM | transverse electromagnetic |
Tx/Rx | transmitting/receiving |
UAV | unmanned aerial vehicle |
Appendix A. Analytical Formula for EM Model
References
- Blyakhman, A.B.; Burov, V.N.; Myakinkov, A.V.; Ryndyk, A.G. Detection of unmanned aerial vehicles via multi-static forward scattering radar with airborne transmit positions. In Proceedings of the 2014 International Radar Conference (Radar), Lille, France, 13–17 October 2014; pp. 1–5.
- Fadeev, R.S.; Myakinkov, A.V.; Ryndyk, A.G.; Ogurtsov, A.G. Detection and tracking of low-observable targets via multi-static forward scatter radar with airborne positions. In Proceedings of the 2015 16th International Radar Symposium (IRS), Dresden, Germany, 24–26 June 2015; pp. 242–247.
- Willis, N.; Griffiths, H. Advances in Bistatic Radar; Institution of Engineering and Technology: Stevenage, UK, 2007. [Google Scholar]
- Glaser, J.I. Fifty years of bistatic and multistatic radar. IEE Proc. F Commun. Radar Signal Proc. 1986, 133, 596–603. [Google Scholar] [CrossRef]
- Glaser, J.I. Bistatic RCS of complex objects near Forward Scatter. IEEE Trans. Aerosp. Electron. Syst. 1985, 21, 70–78. [Google Scholar] [CrossRef]
- Ufimtsev, P.Y. Diffraction of electromagnetic waves at blackbodies and semitransparent plates. Radiophys. Quantum Electron. 1968, 11, 527–538. [Google Scholar] [CrossRef]
- Ufimtsev, P.Y. New insight into the classical Macdonald physical optics approximation. IEEE Trans. Antennas Propag. 2008, 50, 11–20. [Google Scholar]
- Boyle, R.J.; Wasylkiwskyj, W. Comparison of monostatic and bistatic bearing estimation performance for low RCS targets. IEEE Trans. Aerosp. Electron. Syst. 1994, 30, 962–968. [Google Scholar] [CrossRef]
- Suberviola, I.; Mayordomo, I.; Mendizabal, J. Experimental results of air target detection with a GPS forward-scattering radar. IEEE Geosci. Remote Sens. Lett. 2012, 9, 47–51. [Google Scholar] [CrossRef]
- Kabakchiev, C.; Garvanov, I.; Behar, V.; Rohling, H. The experimental study of possibility for radar target detection in FSR using L1-based non-cooperative transmitter. In Proceedings of the 2013 14th International Radar Symposium (IRS), Dresden, Germany, 19–21 June 2013; pp. 625–630.
- Kabakchiev, C.; Garvanov, I.; Behar, V.; Daskalov, P.; Rohling, H. Study of moving target shadows using passive Forward Scatter radar systems. In Proceedings of the 2014 15th International Radar Symposium (IRS), Gdansk, Poland, 16–18 June 2014; pp. 1–4.
- Marra, M.; Luca, A.D.; Hristov, S.; Daniel, L.; Gashinova, M.; Cherniakov, M. New algorithm for signal detection in passive FSR. In Proceedings of the 2015 IEEE Radar Conference, Johannesburg, South Africa, 27–30 October 2015; pp. 218–223.
- Kabakchiev, C.; Garvanov, I.; Behar, V.; Kabakchieva, D.; Kabakchiev, K.; Rohling, H.; Kulpa, K.; Yarovoy, A. The study of target shadows using passive FSR systems. In Proceedings of the 2015 16th International Radar Symposium (IRS), Dresden, Germany, 24–26 June 2015; pp. 628–633.
- Abdullah, R.S.A.R.; Salah, A.A.; Aziz, N.H.A.; Rasid, N.E.A. Vehicle recognition analysis in LTE based forward scattering radar. In Proceedings of the 2016 IEEE Radar Conference (RadarConf), Philadelphia, PA, USA, 2–6 May 2016; pp. 1–5.
- Martelli, T.; Colone, F.; Lombardo, P. First experimental results for a WiFi-based passive forward scatter radar. In Proceedings of the 2016 IEEE Radar Conference (RadarConf), Philadelphia, PA, USA, 2–6 May 2016; pp. 1–6.
- Blyakhman, A.B.; Runova, I.A. Forward scattering radiolocation bistatic RCS and target detection. In Proceedings of the Record of the 1999 IEEE Radar Conference, Waltham, MA, USA, 22–22 April 1999; pp. 203–208.
- Gashinova, M.; Daniel, L.; Sizov, V.; Hoare, E.; Cherniakov, M. Phenomenology of Doppler forward scatter radar for surface targets observation. IET Radar Sonar Navig. 2013, 7, 422–432. [Google Scholar] [CrossRef]
- Zeng, T.; Li, X.; Hu, C.; Long, T. Investigation on accurate signal modelling and imaging of the moving target in ground-based forward scatter radar. IET Radar Sonar Navig. 2011, 5, 862–870. [Google Scholar] [CrossRef]
- Gashinova, M.; Daniel, L.; Cherniakov, M.; Lombardo, P.; Pastina, D.; Luca, A.D. Multistatic Forward Scatter Radar for accurate motion parameters estimation of low-observable targets. In Proceedings of the 2014 International Radar Conference, Lille, France, 13–17 October 2014; pp. 1–4.
- Contu, M.; Pastina, D.; Lombardo, P.; Luca, A.D.; Gashinova, M.; Daniel, L.; Cherniakov, M. Target motion estimation via multistatic Forward Scatter Radar. In Proceedings of the 2015 16th International Radar Symposium (IRS), Dresden, Germany, 24–26 June 2015; pp. 616–621.
- Pastina, D.; Contu, M.; Lombardo, P.; Gashinova, M.; Luca, A.D.; Daniel, L.; Cherniakov, M. Target motion estimation via multi-node forward scatter radar system. IET Radar Sonar Navig. 2016, 10, 3–14. [Google Scholar] [CrossRef]
- Ustalli, N.; Pastina, D.; Lombardo, P. Theoretical performance prediction for the detection of moving targets with Forward Scatter Radar systems. In Proceedings of the 2016 17th International Radar Symposium (IRS), Krakow, Poland, 10–12 May 2016.
- Falconi, M.T.; Comite, D.; Galli, A.; Lombardo, P.; Marzano, F.S. Forward scatter radar modeling: Effects of near field for canonical targets. In Proceedings of the 2015 IEEE International Symposium on Antennas and Propagation USNC/URSI National Radio Science Meeting, Vancouver, BC, Canada, 19–24 July 2015; pp. 492–493.
- Falconi, M.T.; Comite, D.; Marzano, F.S.; Galli, A.; Lombardo, P. Analysis of canonical targets in near field for Forward Scatter Radar applications. In Proceedings of the 2015 European Radar Conference (EuRAD), Paris, France, 9–11 September 2015; pp. 77–80.
- Hu, C.; Sizov, V.; Antoniou, M.; Gashinova, M.; Cherniakov, M. Optimal signal processing in ground-based forward scatter micro radars. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 3006–3026. [Google Scholar] [CrossRef]
- Ufimtsev, P.Y. Fundamentals of the Physical Theory of Diffraction; Wiley and Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Ishimaru, A. Electromagnetic Wave Propagation, Radiation, and Scattering; Prentice Hall: Upper Saddle River, NJ, USA, 1991. [Google Scholar]
- Balanis, C.A. Antenna Theory: Analysis and Design, 3rd ed.; Wiley and Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Kubicke, G.; Yahia, Y.A.; Bourlier, C.; Pinel, N.; Pouliguen, P. Bridging the gap between the Babinet principle and the physical optics approximation: Scalar problem. IEEE Trans. Antennas Propag. 2011, 59, 4725–4732. [Google Scholar] [CrossRef]
- Shavit, R.; Cohen, A.; Ngai, E.C. Characterization of forward scattering parameters from an arbitrarily shaped cylinder by near-field probing. IEEE Trans. Antennas Propag. 1995, 43, 585–590. [Google Scholar] [CrossRef]
- Gould, D.M.; Orton, R.S.; Pollard, R.J.E. Forward scatter radar detection. In Proceedings of the RADAR 2002, Edinburgh, UK, 15–17 October 2002; pp. 36–40.
- Changjiang, L.; Cheng, H.; Jia, X.; Teng, L. Modified signal modeling and imaging method of non-perpendicular crossing targets in forward scatter radar. In Proceedings of the 2014 IEEE Radar Conference, Lille, France, 13–17 October 2014; pp. 291–295.
- Rashid, N.E.A.; Gashinova, M.; Sizov, V.; Cherniakov, M.; Ismail, N.N. The influence of different baseline lengths to ground target signature in a FS micro-radar network. In Proceedings of the 2013 IEEE 9th International Colloquium on Signal Processing and Its Applications (CSPA), Kuala Lumpur, Malaysia, 8–10 March 2013; pp. 21–26.
- Hu, C.; Liu, C.; Wang, R.; Zeng, T. Improved reconstruction of radio holographic signal for Forward Scatter Radar Imaging. Sensors 2016, 16, 651. [Google Scholar] [CrossRef] [PubMed]
- Mei, K.; Bladel, J.V. Scattering by perfectly-conducting rectangular cylinders. IEEE Trans. Antennas Propag. 1963, 11, 185–192. [Google Scholar] [CrossRef]
- FEKO. 2015. Available online: https://www.feko.info/ (accessed on 13 February 2016).
(m) | λ (m) | frequency (MHz) | (m) | (m) | ||
---|---|---|---|---|---|---|
1 | 900 | |||||
20 | 45 |
0 | 100 | 100 | 100 | |
30 | 100 | 50 | 160 | |
45 | 100 | 10 | 200 |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falconi, M.T.; Comite, D.; Galli, A.; Pastina, D.; Lombardo, P.; Marzano, F.S. Forward Scatter Radar for Air Surveillance: Characterizing the Target-Receiver Transition from Far-Field to Near-Field Regions. Remote Sens. 2017, 9, 50. https://doi.org/10.3390/rs9010050
Falconi MT, Comite D, Galli A, Pastina D, Lombardo P, Marzano FS. Forward Scatter Radar for Air Surveillance: Characterizing the Target-Receiver Transition from Far-Field to Near-Field Regions. Remote Sensing. 2017; 9(1):50. https://doi.org/10.3390/rs9010050
Chicago/Turabian StyleFalconi, Marta Tecla, Davide Comite, Alessandro Galli, Debora Pastina, Pierfrancesco Lombardo, and Frank Silvio Marzano. 2017. "Forward Scatter Radar for Air Surveillance: Characterizing the Target-Receiver Transition from Far-Field to Near-Field Regions" Remote Sensing 9, no. 1: 50. https://doi.org/10.3390/rs9010050