Mapping Vulnerable Urban Areas Affected by Slow-Moving Landslides Using Sentinel-1 InSAR Data
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. InSAR Data
- Prisar. This part refers to the co-registration of SAR images and generation of interferograms, coherence maps, and differential phase matrices. The Terrain Observation by Progressive Scans (TOPS) acquisition mode of Sentinel-1 data requires an improved co-registration method [41]. Typically, it is proven that images acquired by standard mode (or stripmap) have to be aligned with an accuracy of less than 0.1 pixel to have no impact on the phase quality. This parameter is stronger (less than a few thousandths of a pixel) for the TOPS acquisition mode of S-1. The whole process to correctly co-register a slave Single Look Complex (SLC) image against the master SLC image, can be summarized in the following steps: (1) Deramping of the slave image to remove the azimuth quadratic phase term; (2) Geometric offset estimation and application; (3) Estimation of a constant offset through amplitude correlation; (4) Enhanced spectral diversity (ESD) to correct a residual offset; (5) Reramping. After co-registration, 315 and 273 multi-looked interferograms using the ascending and descending dataset, respectively, were generated, with a spatial resolution of 40 × 40 m. The topographic phase contribution was removed using a 25 m digital elevation model produced by the Spanish Geographical Survey (IGN).
- Subsoft. This part corresponds to the advanced DInSAR algorithm and consists of four main parts: (1) Pixel selection of persistent scatterers (PS) and distributed scatterers (DS) based on the coherence of pixels; (2) Estimation of the main component of displacement and the point height; (3) Estimation and removal of atmospheric artefacts and retrieval of the temporal evolution of the deformation, also called non-linear deformation; (4) Geocoding and projection of the results.
3.2. Horizontal and Vertical Deformation
3.3. Projection of the LOS Deformation Rate onto the Maximum Slope Direction (Vslope)
3.4. Generating the Map of Vulnerable Buildings
4. Results
4.1. InSAR Results
4.2. Horizontal and Vertical Deformation Rate
4.3. Deformation Rates Projected onto the Maximum Slope Direction
4.4. Classification of Buildings Damage
- To the north of La Verbena, there is a neighbourhood built in 1970–1975 where no damage was visible and, thus, all buildings were assigned a degree of damage 2. This neighbourhood is very close to the crown area of the landslide, but it is located over a different, more stable material (calcarenites and sandstones, [48]).
- To the east of La Verbena we found the old town. Although damage is visible in some historical buildings we did not record them because they are related to different phenomena that have affected the town in the past, such as the 1699 earthquake and the 1755 Lisbon earthquake, whose effects are visible in the tower of the Basilica Minor of Santa María de la Asunción (XIV Century) [50].
4.5. Vulnerable Buildings Map
5. Discussion
5.1. Geomorphology of the Landslide and Ground Deformation
5.2. Comparasion of Damages Map and Deformation
5.3. Vulnerable Buildings Map, Potential, and Limits
6. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Petley, D. Global patterns of loss of life from landslides. Geology 2012, 40, 927–930. [Google Scholar] [CrossRef]
- Haque, U.; Blum, P.; da Silva, P.F.; Haque, U.; Blum, P.; da Silva, P.F.; Andersen, P.; Pilz, J.; Chalov, S.R.; Malet, J.P.; et al. Fatal landslides in Europe. Landslides 2016. [Google Scholar] [CrossRef]
- Gariano, S.L.; Guzzetti, F. Landslides in a changing climate. Earth-Sci. Rev. 2016, 162, 227–252. [Google Scholar] [CrossRef]
- Cruden, D.M. A simple definition of a landslide. Bull. Int. Assoc. Eng. Geol. 1991, 43, 27–29. [Google Scholar] [CrossRef]
- Cigna, F.; Bianchini, S.; Casagli, N. How to assess landslide activity and intensity with Persistent Scatterer Interferometry (PSI): The PSI-based matrix approach. Landslides 2013, 10, 267–283. [Google Scholar] [CrossRef] [Green Version]
- Calvello, M.; Peduto, D.; Arena, L. Combined use of statistical and DInSAR data analyses to define the state of activity of slow-moving landslides. Landslides 2017, 14, 473–489. [Google Scholar] [CrossRef]
- Raspini, F.; Bardi, F.; Bianchini, S.; Ciampalini, A.; Del Ventisette, C.; Farina, P.; Ferrigno, F.; Solari, L.; Casagli, N. The contribution of satellite SAR-derived displacement measurements in landslide risk management practices. Nat. Hazards 2017, 86, 327–351. [Google Scholar] [CrossRef]
- Scaioni, M.; Longoni, L.; Melillo, V.; Papini, M. Remote Sensing for Landslide Investigations: An Overview of Recent Achievements and Perspectives. Remote Sens. 2014, 6. [Google Scholar] [CrossRef]
- Delacourt, C.; Allemand, P.; Casson, B.; Vadon, H. Velocity field of the “La Clapiere” landslide measured by the correlation of aerial and QuickBird satellite images. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Stumpf, A.; Malet, J.P.; Delacourt, C. Correlation of satellite image time-series for the detection and monitoring of slow-moving landslides. Remote Sens. Environ. 2017, 189, 40–55. [Google Scholar] [CrossRef]
- Le Bivic, R.; Allemand, P.; Quiquerez, A.; Delacourt, C. Potential and Limitation of SPOT-5 Ortho-Image Correlation to Investigate the Cinematics of Landslides: The Example of “Mare à Poule d’Eau” (Réunion, France). Remote Sens. 2017, 9, 106. [Google Scholar] [CrossRef]
- Raspini, F.; Ciampalini, A.; Del Conte, S.; Lombardi, L.; Nocentini, M.; Gigli, G.; Ferretti, A.; Casagli, N. Exploitation of Amplitude and Phase of Satellite SAR Images for Landslide Mapping: The Case of Montescaglioso (South Italy). Remote Sens. 2015, 7, 14576–14596. [Google Scholar] [CrossRef]
- Singleton, A.; Li, Z.; Hoey, T.; Muller, J.-P. Evaluating sub-pixel offset techniques as an alternative to D-InSAR for monitoring episodic landslide movements in vegetated terrain. Remote Sens. Environ. 2014, 147, 133–144. [Google Scholar] [CrossRef]
- Fruneau, B.; Achache, J.; Delacourt, C. Observation and model-ling of the Saint-Etienne-de-Tine’e landslide using SAR interferometry. Tectonophysics 1996, 265, 181–190. [Google Scholar] [CrossRef]
- Colesanti, C.; Wasowski, J. Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry. Eng. Geol. 2006, 88, 173–199. [Google Scholar] [CrossRef]
- Tofani, V.; Raspini, F.; Catani, F.; Casagli, N. Persistent Scatterer Interferometry (PSI) technique for landslide characterization and monitoring. Remote Sens. 2013, 5, 1045–1065. [Google Scholar] [CrossRef]
- Herrera, G.; Gutiérrez, F.; García-Davalillo, J.C.; Guerrero, J.; Notti, D.; Galve, J.P.; Cooksley, G. Multi-sensor advanced DInSAR monitoring of very slow landslides: The Tena Valley case study (Central Spanish Pyrenees). Remote Sens. Environ. 2013, 128, 31–43. [Google Scholar] [CrossRef]
- Massonnet, D.; Feigl, K.L. Radar interferometry and its application to changes in the Earth’s surface. Rev. Geophys. 1998, 36, 441–500. [Google Scholar] [CrossRef]
- Herrera, G.; Notti, D.; García-Davalillo, J.C.; Mora, O.; Cooksley, G.; Sánchez, M.; Arnaud, A.; Crosetto, M. Analysis with C- and X-band satellite SAR data of the Portalet landslide area. Landslides 2011, 8, 195–206. [Google Scholar] [CrossRef]
- Bardi, F.; Frodella, W.; Ciampalini, A.; Bianchini, S.; Del Ventisette, C.; Gigli, G.; Fanti, R.; Moretti, S.; Basile, G.; Casagli, N. Integration between ground based and satellite SAR data in landslide mapping: The San Fratello case study. Geomorphology 2014, 223, 45–60. [Google Scholar] [CrossRef]
- Bianchini, S.; Pratesi, F.; Nolesini, T.; Casagli, N. Building Deformation Assessment by Means of Persistent Scatterer Interferometry Analysis on a Landslide-Affected Area: The Volterra (Italy) Case Study. Remote Sens. 2015, 4678–4701. [Google Scholar] [CrossRef]
- Notti, D.; Galve, J.P.; Mateos, R.M.; Montserrat, O.; Lamas-Fernández, F.; Fernández-Chacón, F.; Roldán-García, F.J.; Pérez-Peña, V.; Crosetto, M.; Azañón, J.M. Human-induced coastal landslide reactivation. Monitoring by PSInSAR techniques and urban damage survey (SE Spain). Landslides 2015, 12, 1007–1014. [Google Scholar] [CrossRef]
- Cascini, L.; Peduto, D.; Pisciotta, G.; Arena, L.; Ferlisi, S.; Fornaro, G. The combination of DInSAR and facility damage data for the updating of slow-moving landslide inventory maps at medium scale. Nat. Hazards Earth Syst. Sci. 2013, 13, 1527–1549. [Google Scholar] [CrossRef]
- Ciampalini, A.; Bardi, F.; Bianchini, S.; Frodella, W.; Ventisette, C.D.; Moretti, S.; Casagli, N. Analysis of building deformation in landslide area using multisensor PSInSARTM technique. Int. J. Appl. Earth Obs. Geoinf. 2014. [Google Scholar] [CrossRef] [PubMed]
- Mateos, R.M.; Azañón, J.M.; Roldán, F.J.; Notti, D.; Pérez-Peña, V.; Galve, J.P.; Pérez-García, J.L.; Colomo, C.M.; Gómez-López, J.M.; Montserrat, O.; et al. The combined use of PSInSAR and UAV photogrammetry techniques for the analysis of the kinematics of a coastal landslide affecting an urban area (SE Spain). Landslides 2017, 14, 743–754. [Google Scholar] [CrossRef]
- Infante, D.; Confuorto, P.; Di Martire, D.; Ramondini, M.; Calcaterra, D. Use of DInSAR Data for Multi-level Vulnerability Assessment of Urban Settings Affected by Slow-moving and Intermittent Landslides. Procedia Eng. 2016, 158, 470–475. [Google Scholar] [CrossRef]
- Peduto, D.; Nicodemo, G.; Maccabiani, J.; Ferlisi, S. Multi-scale analysis of settlement-induced building damage using damage surveys and DInSAR data: A case study in The Netherlands. Eng. Geol. 2017, 218, 117–133. [Google Scholar] [CrossRef]
- Cooper, A.H. The classification, recording, databasing and use of information about building damage caused by subsidence and landslides. Q. J. Eng. Geol. Hydrogeol. 2008, 41, 409–424. [Google Scholar] [CrossRef]
- Sanz de Galdeano, C.; Vera, J.A. Una propuesta de clasificación de las cuencas neógenas béticas. Acta Geológica Hispánica 1991, 26, 205–227. (In Spanish) [Google Scholar]
- Tsige, M.; González de Vallejo, L.; Doval, M.; Barba, C. Microfabric of Guadalquivir “Blue Marls” and its engineering geological significance. In Proceedings of the 7th International IAEG Congress, Lisboa, Portugal, 5–9 September 1994; Volume 4, pp. 45–51. [Google Scholar]
- Alonso, E.E.; Pinyol, N.M.; Puzrin, A.M. Earth Dam Sliding Failure: Aznalcóllar Dam. Spain. In Geomechanics of Failures. Advanced Topics; Springer International Publishing: Berlin, Germany, 2010; pp. 129–167. [Google Scholar]
- Oteo, C. Las Margas Azules del Guadalquivir y la Inestabilidad de Taludes. Rev. Rutas 2000, 77, 17–27. (In Spanish) [Google Scholar]
- Mancheño, M. Apuntes para una historia de Arcos de la Frontera; Tipografia Arcobricense: Cádiz, Spain, 1894. (In Spanish) [Google Scholar]
- García, A. Apuntes para una historia de Arcos de la Frontera. Término municipal de Arcos de la Frontera (Cádiz); Technical Report; Servicio Geológico de Obras Públicas: Madrid, Spain, 1970; unpublished. (In Spanish) [Google Scholar]
- El Pais. Available online: https://politica.elpais.com/politica/2017/03/04/actualidad/1488631296_954971.html (accessed on 22 July 2017).
- Granada Hoy. Available online: http://www.granadahoy.com/andalucia/Arcos-ciudad-agrietada-desliza_0_458654602.html (accessed on 22 July 2017).
- Junta de Andalucia, Orthoimages Covering the Andalusian Region. Available online: http://www.juntadeandalucia.es/medioambiente/site/rediam/menuitem.aedc2250f6db83cf8ca78ca731525ea0/?vgnextoid=867122ad8470f210VgnVCM1000001325e50aRCRD&lr=lang_es (accessed on 19 July 2017).
- Mora, O.; Mallorquí, J.J.; Broquetas, A. Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2243–2253. [Google Scholar] [CrossRef]
- Blanco-Sánchez, J.; Mallorquí, J.; Duque, S.; Monells, D. The Coherent Pixels Technique (CPT): An Advanced DInSAR Technique for Nonlinear Deformation Monitoring. Pure Appl. Geophys. 2008, 165, 1167–1193. [Google Scholar] [CrossRef]
- Confuorto, P.; Di Martire, D.; Centolanza, G.; Iglesias, R.; Mallorqui, J.J.; Novellino, A.; Plank, S.; Ramondini, M.; Thuro, K.; Calcaterra, D. Post-failure evolution analysis of a rainfall-triggered landslide by multi-temporal interferometry SAR approaches integrated with geotechnical analysis. Remote Sens. Environ. 2017, 188, 51–72. [Google Scholar] [CrossRef]
- Centolanza, G.; Duro, J.; Mallorquí, J.J. Achieving precise Sentinel 1 coregistration with CPT, experience and lesson learnt. In Proceedings of the Fringe 2017 Workshop, Helsinky, Finland, 5–9 June 2017. [Google Scholar]
- Raspini, F.; Cigna, F.; Moretti, S. Multi-Temporal Mapping of Land Subsidence at Basin Scale Exploiting Persistent Scatterer Interferometry: Case Study of Gioia Tauro Plain (Italy). J. Maps 2012. [Google Scholar] [CrossRef]
- Notti, D.; Herrera, G.; Bianchini, S.; Meisina, C.; García-Davalillo, J.C.; Zucca, F. A methodology for improving landslide PSI data analysis. Int. J. Remote Sens. 2014, 35, 2186–2214. [Google Scholar]
- Bru, G.; González, P.J.; Mateos, R.M.; Roldán, F.J.; Herrera, G.; Béjar-Pizarro, M.; Fernández, J. A-DInSAR monitoring of landslide and subsidence activity: A Case of Urban Damage in Arcos de la Frontera, Spain. Remote Sens. 2017, 9, 787. [Google Scholar] [CrossRef]
- Meisina, C.; Zucca, F.; Notti, D.; Colombo, A.; Cucchi, A.; Savio, G.; Giannico, C.; Bianchi, M. Geological interpretation of PSInSAR data at regional scale. Sensors 2008, 8, 7469–7492. [Google Scholar] [CrossRef] [PubMed]
- Cruden, D.M.; Varnes, D.J. Landslide types and processes. In Landslides: Investigation and Mitigation; Turner, A.K., Schuster, R.L., Eds.; Transportation Research Board, National Research Council, National Academy Press: Washington, DC, USA, 1996; pp. 36–75. [Google Scholar]
- Hutchinson, J.N. General Report: Morphological and geotechnical parameters of landslides in relation to geology and hydrogeology. In Proceedings of the 5th International Symposium on Landslides, Lausanne, Switzerland, 10–15 July 1988; Volume 1, pp. 3–25. [Google Scholar]
- Jerez, L.; Moreno, E.; Granados, L.F.; Leyva, F. Geological Map of Spain, region 1049 (Arcos de la Frontera). Technical Report. IGME 1990. (In Spanish). Available online: http://info.igme.es/cartografiadigital/geologica/Magna50Hoja.aspx?Id=1049#memoria_y_metadatos (accessed on 21 August 2017).
- Santos, J. Obras reales y recalces en arcillas expansivas y suelos colapsables. In 1a Jornada Sobre Ingeniería del Terreno; Universidad de Jaén: Jaén, Spain, 2010. (In Spanish) [Google Scholar]
- Martínez-Solares, J.M. Los Efectos en España del Terremoto de Lisboa (1 de Noviembre de 1755); Dirección General del Instituto Geográfico Nacional: Madrid, Spain, 2001. (In Spanish) [Google Scholar]
- Herrera, G.; Álvarez Fernández, M.I.; Tomás, R.; González-Nicieza, C.; Lopez-Sanchez, J.M.; Álvarez Vigil, A.E. Forensic analysis of buildings affected by mining subsidence based on Differential Interferometry (Part III). Eng. Fail. Anal. 2012, 24, 67–76. [Google Scholar] [CrossRef]
- Tomás, R.; García-Barba, J.; Cano, M.; Sanabria, M.P.; Ivorra, S.; Duro, J.; Herrera, G. Subsidence damage assessment of a gothic church using Differential Interferometry and field data. Struct. Health Monit. 2012, 11, 751–762. [Google Scholar] [CrossRef] [Green Version]
- Sanabria, M.P.; Guardiola-Albert, C.; Tomás, R.; Herrera, G.; Prieto, A.; Sánchez, H.; Tessitore, S. Subsidence activity maps derived from DInSAR data: Orihuela case study. Nat. Hazards Earth Sci. Syst. 2014, 14, 1341–1360. [Google Scholar] [CrossRef] [Green Version]
- Corbane, C.; De Groeve, T.; Ehlrich, D. Guidance for Recording and Sharing Disaster Damage and Loss Data: Towards the Development of Operational Indicators to Translate the Sendai Framework into Action; EU expert working group on disaster damage and loss data (2015), Publications Office of the European Union: Luxembourg City, Luxembourg, 2015; ISBN 978-92-79-47452-1. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Béjar-Pizarro, M.; Notti, D.; Mateos, R.M.; Ezquerro, P.; Centolanza, G.; Herrera, G.; Bru, G.; Sanabria, M.; Solari, L.; Duro, J.; et al. Mapping Vulnerable Urban Areas Affected by Slow-Moving Landslides Using Sentinel-1 InSAR Data. Remote Sens. 2017, 9, 876. https://doi.org/10.3390/rs9090876
Béjar-Pizarro M, Notti D, Mateos RM, Ezquerro P, Centolanza G, Herrera G, Bru G, Sanabria M, Solari L, Duro J, et al. Mapping Vulnerable Urban Areas Affected by Slow-Moving Landslides Using Sentinel-1 InSAR Data. Remote Sensing. 2017; 9(9):876. https://doi.org/10.3390/rs9090876
Chicago/Turabian StyleBéjar-Pizarro, Marta, Davide Notti, Rosa M. Mateos, Pablo Ezquerro, Giuseppe Centolanza, Gerardo Herrera, Guadalupe Bru, Margarita Sanabria, Lorenzo Solari, Javier Duro, and et al. 2017. "Mapping Vulnerable Urban Areas Affected by Slow-Moving Landslides Using Sentinel-1 InSAR Data" Remote Sensing 9, no. 9: 876. https://doi.org/10.3390/rs9090876