ISAR Imaging Based on the Wideband Hyperbolic Frequency-ModulationWaveform
Abstract
:1. Introduction
2. Doppler Property of the LFM Waveform
3. HFM-Based ISAR Imaging
3.1. Doppler-Invariant Property of the HFM Waveform
3.2. Decurve Processing with the Existing Configuration
4. Experimental Section
4.1. RFI between LFM and HFM
4.2. HRRPs with the LFM and HFM Waveforms
Waveform | Velocity (m/s) | Ideal Waveform | With Frequency Errors | ||
---|---|---|---|---|---|
PSLR (dB) | ISLR (dB) | PSLR (dB) | ISLR (dB) | ||
LFM | 100 | −11.22 | −7.91 | −7.32 | −3.88 |
1000 | - | - | - | - | |
HFM | 100 | −13.27 | −9.60 | −9.13 | −4.49 |
1000 | −13.27 | −9.60 | −9.13 | −4.49 |
4.3. ISAR Imaging Simulation
Waveform | Velocity Compensation | Time Cost (s) | Image Entropy | Image Contrast |
---|---|---|---|---|
LFM | no | 3.25 | 12.71 | 18.50 |
ICPF | 280.13 | 10.53 | 42.91 | |
HFM | no | 3.22 | 10.50 | 43.08 |
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix
A. Simplification of the Logarithmic Phase in Equation (18)
References
- Kroszczynski, J.J. Pulse compression by means of linear-period modulation. IEEE Proc. 1980, 57, 1260–1266. [Google Scholar] [CrossRef]
- Ramp, H.O.; Wingrove, E.R., Jr. Performance degradation of linear FM-pulse-compression systems due to the Doppler effect. Proc. IRE 1961, 49, 1693–1694. [Google Scholar]
- Liu, A.; Zhu, X.; Lu, J.; Liu, Z. The ISAR range profile compensation of fast-moving target using the dechirp method. In Proceedings of the IEEE International Conference on Neural Networks and Signal Processing, Nanjing, China, 14–17 December 2003; Volume 2, pp. 1619–1623.
- Cao, M.; Fu, Y.; Jiang, W.; Li, X.; Zhuang, Z. High resolution range profile imaging of high speed moving targets based on fractional Fourier transform. Proc. SPIE 2007, 6786. [Google Scholar] [CrossRef]
- Tian, B.; Chen, Z.; Xu, S.; Liu, Y. ISAR imaging compensation of high speed targets based on integrated cubic phase function. In Proceedings of the Eighth International Symposium on Multispectral Image Processing and Pattern Recognition, Wuhan, China, 26–27 October 2013; Volume 8917, pp. 89170B-1–89170B-8.
- Yang, J.; Sarkar, T.K. Doppler-invariant property of hyperbolic frequency modulated waveforms. Microw. Opt. Technol. Lett. 2006, 48, 1174–1179. [Google Scholar] [CrossRef]
- Yang, J.; Sarkar, T.K. Acceleration-invariance of hyperbolic frequency modulated pulse compression. Digit. Signal Process. 2008, 18, 228–235. [Google Scholar] [CrossRef]
- Song, X.; Willett, P.; Zhou, S. Range bias modeling for hyperbolic-frequency-modulated waveforms in target tracking. IEEE J. Ocean. Eng. 2012, 37, 670–679. [Google Scholar] [CrossRef]
- Doisy, Y.; Deruaz, L.; Beerens, S.P.; Been, R. Target Doppler estimation using wideband frequency modulated signals. IEEE Trans. Signal Process. 2010, 48, 1213–1224. [Google Scholar] [CrossRef]
- McCue, J.J.G. Modulation diversity for pulse-compressing radars. IEEE Trans. Aerosp. Electron. Syst. 1977, 13, 541–544. [Google Scholar] [CrossRef]
- Wang, J.; Cai, D.; Wen, Y. Comparison of matched filter and dechirp processing used in linear frequency modulation. In Proceedings of the 2011 IEEE 2nd International Conference on Computing, Control and Industrial Engineering (CCIE), Wuhan, China, 20–21 August 2011; Volume 2, pp. 70–73.
- Wang, J.; Jiang, H.; Zhang, Y.; Yao, W. Research and implementation of dechirp pulse compression processing algorithm. In Proceedings of the 2010 International Conference on Computational Problem-Solving (ICCP), Lijiang, China, 3–5 December 2010; Volume 1, pp. 428–431.
- Xing, M.; Bao, Z. High resolutio isar imaging of high speed moving targets. IEEE Proc. Radar Sonar Navig. 2005, 152, 58–67. [Google Scholar] [CrossRef]
- Maymon, S.; Oppenheim, A.V. Sinc interpolation of nonuniform sample. IEEE Trans. Signal Process. 2011, 59, 4745–4758. [Google Scholar] [CrossRef]
- Kramer, S.A. Doppler and acceleration tolerances of high-gain, wideband linear FM correlation sonars. Proc. IEEE 1967, 55, 627–636. [Google Scholar] [CrossRef]
- Lu, B.Y.; Liang, D. Effects of FM linearity on the performance of LFM signals. Syst. Eng. Electron. 2005, 27, 1384–1386. [Google Scholar]
- Su, Z.; Yuan, Y. Range alignment methods for ISAR imaging. In Proceedings of the 2011 International Conference on Graphic and Image Processing, Cairo, Egypt, 1–3 October 2011; Volume 8285, pp. 82857S-1–82857S-5.
- Zhu, Z.D.; Qiu, X.H.; She, Z.S. ISAR motion compensation using modified Doppler centroid tracking method. In Proceedings of the IEEE 1996 National Aerospace and Electronics Conference, NAECON, Dayton, OH, USA, 20–23 May 1996; Volume 1, pp. 359–363.
- Altes, R.A. Radar/sonar acceleration estimation with linear-period modulated waveforms. IEEE Trans. Aerosp. Electron. Syst. 1990, 26, 914–924. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, W.; Yeh, C.-m.; Jin, K.; Yang, J.; Lu, Y.-b. ISAR Imaging Based on the Wideband Hyperbolic Frequency-ModulationWaveform. Sensors 2015, 15, 23188-23204. https://doi.org/10.3390/s150923188
Zhou W, Yeh C-m, Jin K, Yang J, Lu Y-b. ISAR Imaging Based on the Wideband Hyperbolic Frequency-ModulationWaveform. Sensors. 2015; 15(9):23188-23204. https://doi.org/10.3390/s150923188
Chicago/Turabian StyleZhou, Wei, Chun-mao Yeh, Kan Jin, Jian Yang, and Yao-bin Lu. 2015. "ISAR Imaging Based on the Wideband Hyperbolic Frequency-ModulationWaveform" Sensors 15, no. 9: 23188-23204. https://doi.org/10.3390/s150923188