Monitoring Method of Total Seed Mass in a Vibrating Tray Using Artificial Neural Network
Abstract
:1. Introduction
2. Materials
2.1. DEM Simulations
2.2. Seeds Vibration Characteristics
3. Methods
3.1. SMA Measurement Method
3.2. Monitoring Method Using BP Neural Network
3.3. Structure of Vacuum Plate Seeder
3.4. SMA Measurement Device
4. Results
4.1. DEM Simulation Data Analysis
4.2. Monitoring Experiments
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xu, X.-P.; He, P.; Yang, F.-Q.; Ma, J.-C.; Mirasol, F.P.; Adrian, M.J.; Zhou, W. Methodology of fertilizer recommendation based on yield response and agronomic efficiency for rice in China. Field Crop. Res. 2017, 206, 33–42. [Google Scholar] [CrossRef]
- He, R.-Y.; Luo, H.-Y.; Li, Y.-T.; Wang, X.-H.; Zhang, L. Comparison and analysis of different rice planting methods in China. Trans. Chin. Soc. Agric. Eng. 2008, 24, 167–171. [Google Scholar]
- Yi, S.-J.; Liu, Y.-F.; Wang, C.; Tao, G.-X. Experimental study on the performance of bowl-tray rice precision seeder. Int. J. Agric. Boil. Eng. 2014, 7, 17–25. [Google Scholar]
- Topakci, M.; Karayel, D.; Canacki, M.; Furat, S.; Uzun, B. Sesame hill dropping performance of a vacuum seeder for different tillage practices. Appl. Eng. Agric. 2011, 27, 203–209. [Google Scholar] [CrossRef]
- Movahedi, E.; Rezvani, M.; Hemmat, A. Design, development and evaluation of a pneumatic seeder for automatic planting of seeds in cellular trays. J. Agric. Mach. 2014, 4, 65–72. [Google Scholar]
- Andrii, Y.; Jean-Pierre, L.; Frédéric, C. Influence of the divider head functioning conditions and geometry on the seed’s distribution accuracy of the air-seeder. Biosyst. Eng. 2017, 161, 120–134. [Google Scholar]
- Xing, H.; Wang, Z.-M.; Luo, X.-W.; Cao, X.-M.; Liu, C.-B.; Zang, Y. General structure design and field experiment of pneumatic rice direct-seeder. Int. J. Agric. Boil. Eng. 2017, 10, 31–42. [Google Scholar]
- Liu, C.-L.; Song, J.-N. Influence of seed tray vibration on work performance of suction-vibration type precision seed device. J. China Agric. Univ. 2004, 9, 12–14. [Google Scholar]
- Zhao, Z.; Tian, C.-J.; Wu, Y.-F.; Huang, H.-D. Dynamic simulation of seed pick-up process and parameter optimization on vacuum plate seeder for rice. Trans. Chin. Soc. Agric. Eng. 2018, 34, 38–44. [Google Scholar]
- Tijskens, E.; Ramon, H.; De Baerdemaeker, J. Discrete element modeling for process simulation in agriculture. J. Sound Vib. 2003, 266, 493–514. [Google Scholar] [CrossRef]
- Parafiniuk, P.; Molenda, M.; Horabik, J. Discharge of rapeseeds from a model silo: Physical testing and discrete element method simulations. Comput. Electron. Agric. 2013, 97, 40–46. [Google Scholar] [CrossRef]
- Josephine, B.; Ambrose, R.; Mark, C.; Ronaldo, M.; Dirk, M. Applications of discrete element method in modeling of grain postharvest operations. Food Eng. Rev. 2014, 6, 128–149. [Google Scholar]
- Lu, G.; Third, J.R.; Müller, C.R. Discrete element models for non-spherical particle systems: From theoretical developments to applications. Chem. Eng. Sci. 2015, 127, 425–465. [Google Scholar] [CrossRef]
- Boon, C.W.; Houlsby, G.T.; Utili, S. A new algorithm for contact detection between convex polygonal and polyhedral particles in the discrete element method. Comput. Geotech. 2012, 44, 73–82. [Google Scholar] [CrossRef]
- Mehmet, C.; Giusepp, B. DEM assessment of scaling laws capturing the grain size dependence of yielding in granular soils. Granul. Matter 2016, 18, 1–15. [Google Scholar]
- Markauskas, D.; Kačianauskas, R. Investigation of rice grain flow by multi-sphere particle model with rolling resistance. Granul. Matter 2011, 13, 143–148. [Google Scholar] [CrossRef]
- Weigler, F.; Mellmann, J. Investigation of grain mass flow in a mixed flow dryer. Particuology 2014, 12, 33–39. [Google Scholar] [CrossRef]
- Wang, X.-M.; Yu, J.-Q.; Lv, F.-Y.; Wang, Y.; Fu, H. A multi-sphere based modelling method for maize grain assemblies. Appl. Power Technol. 2017, 28, 584–595. [Google Scholar] [CrossRef]
- Raji, A.O.; Favier, J.F. Model for the deformation in agricultural and food particulate materials under bulk compressive loading using discrete element method. I: Theory, model development and validation. J. Food Eng. 2004, 64, 359–371. [Google Scholar] [CrossRef]
- Zhao, Z.; Wu, Y.-F.; Yin, J.-J.; Tang, Z. Monitoring method of rice seeds mass in vibrating tray for vacuum-panel precision seeder. Comput. Electron. Agric. 2015, 114, 25–31. [Google Scholar]
- Horabik, J.; Molenda, M. Parameters and contact models for DEM simulations of agricultural granular materials: A review. Biosyst. Eng. 2016, 147, 206–225. [Google Scholar] [CrossRef]
- Chen, J.; Gong, Z.-Q.; Li, Y.-M.; Li, J.-H.; Xu, Y. Experimental study on nursing seedlings of super rice precision seeder device. Trans. Chin. Soc. Agric. Mach. 2015, 46, 73–78. [Google Scholar]
- Zhou, F.-Q.; Su, Z.; Chai, X.-H.; Chen, L.-P. Detection of foreign matter in transfusion solution based on gaussian background modeling and an optimized BP neural network. Sensors 2014, 14, 19945–19962. [Google Scholar] [CrossRef] [PubMed]
- Que, R.Y.; Zhu, R. A Two-Dimensional Flow Sensor with Integrated Micro Thermal Sensing Elements and a Back Propagation Neural Network. Sensors 2014, 14, 564–574. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Yang, S.X.; Mittal, G.S.; Yi, S.J. Prediction of performance indices and optimal parameters of rough rice drying with neural networks. Biosyst. Eng. 2002, 83, 281–290. [Google Scholar] [CrossRef]
- Zhao, Z.; Jin, M.Z.; Tian, C.J.; Yang, S.X. Prediction of seed distribution in rectangular vibrating tray using grey model and artificial neural network. Biosyst. Eng. 2018, 175, 194–205. [Google Scholar] [CrossRef]
Parameter | Rice Seed | Tray | |
---|---|---|---|
Semiaxes (mm) | 2.85 × 1.55 × 1.35 | / | |
Mass (g) | 26.5 × 10−3 | / | |
Density (kg/m3) | 1080 | 2800 | |
Young’s modulus (MPa) | 375 | 72,000 | |
Poisson’s ratio | 0.25 | 0.33 | |
Coefficient of friction | seed-seed | 0.48 | / |
seed-tray | / | 0.32 | |
Coefficient of restitution | seed-seed | 0.42 | / |
seed-tray | / | 0.48 | |
Time step (s) | 1 × 10−6 |
Time (s) | Parameter #1 (κ0 = 0.9 g/cm2) | Parameter #2 (κ0 = 1.2 g/ cm2) | Parameter #3 (κ0 = 1.5 g/ cm2) |
---|---|---|---|
Direction Angles (°) | Direction Angles (°) | Direction Angles (°) | |
0–10 | [90, 90, 0] | [90, 90, 0] | [90, 90, 0] |
10–15 | [88.7, 89.1, 1.51] | [89.7, 88.7, 1.50] | [88.6, 88.6, 2.00] |
15–20 | [91.2, 89.1, 1.50] | [89.2, 91.7, 1.94] | [90.1, 90.8, 0.73] |
20–25 | [89.6, 86.5, 0.52] | [91.6, 90.5,1.66] | [91.6, 91.8, 2.49] |
25–30 | [89.6, 91.5, 1.21] | [89.9, 91.8, 1.75] | [88.8, 91.0, 1.55] |
30–35 | [87.9, 90.1, 0.33] | [99.2, 92.1, 2.26] | [90.0, 89.0, 1.00] |
35–40 | [89.6, 87.5, 2.48] | [88.6, 98.1, 1.65] | [89.1, 89.4, 1.13] |
40–45 | [92.3, 90.5, 2.30] | [91.2, 91.5, 1.81] | [90.5, 91.3, 1.37] |
45–50 | [89.8, 89.9, 0.20] | [90.1, 91.0, 1.00] | [91.7, 89.7, 1.69] |
50–55 | [89.6, 91.0, 1.02] | [89.3, 91.4, 1.52] | [90.0, 89.0, 0.97] |
55–60 | [89.7, 90.0, 0.26] | [89.0, 90.6, 0.89] | [90.0, 87.5, 2.47] |
60–65 | [88.5, 90.0, 1.46] | [90.0, 89.4, 0.06] | [89.9, 91.5, 1.52] |
65–70 | [90.8, 89.9, 0.83] | [90.6, 89.0, 1.11] | [90.0, 89.5, 0.06] |
[α, β, γ] are angles between the vibration direction vector and X, Y, and Z axes. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Qin, F.; Tian, C.-J.; Yang, S.X. Monitoring Method of Total Seed Mass in a Vibrating Tray Using Artificial Neural Network. Sensors 2018, 18, 3659. https://doi.org/10.3390/s18113659
Zhao Z, Qin F, Tian C-J, Yang SX. Monitoring Method of Total Seed Mass in a Vibrating Tray Using Artificial Neural Network. Sensors. 2018; 18(11):3659. https://doi.org/10.3390/s18113659
Chicago/Turabian StyleZhao, Zhan, Fang Qin, Chun-Jie Tian, and Simon X. Yang. 2018. "Monitoring Method of Total Seed Mass in a Vibrating Tray Using Artificial Neural Network" Sensors 18, no. 11: 3659. https://doi.org/10.3390/s18113659