Solid-State Emissive Metallo-Supramolecular Assemblies of Quinoline-Based Acyl Hydrazone
Abstract
:1. Introduction
2. Materials and Methods
2.1. General
2.2. Synthesis of (E)-N′-(quinolin-2-ylmethylene)benzohydrazide (mQH)
2.3. Synthesis of (N′1E,N′4E)-N′1,N′4-bis(isoquinolin-3-ylmethylene)terephthalohydrazide (bQH) [59]
2.4. Comparison of bQH and mQH on Different Substrates
2.5. Metal Screening of bQH
2.6. Absorption and Emission Measurements
2.7. Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) Measurement
2.8. UV–Vis Spectroscopic Titration of bQH with Zn(CN)2
2.9. Fluorescence Quantum Yield (FQY) Measurements
2.10. 1H-NMR Study on bQH-Zn2+ Binding Modes
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Keefe, M.H.; Benkstein, K.D.; Hupp, J.T. Luminescent sensor molecules based on coordinated metals: A review of recent developments. Coord. Chem. Rev. 2000, 205, 201–228. [Google Scholar] [CrossRef]
- Kaur, B.; Kaur, N.; Kumar, S. Colorimetric metal ion sensors—A comprehensive review of the years 2011–2016. Coord. Chem. Rev. 2018, 358, 13–69. [Google Scholar] [CrossRef]
- Schaferling, M. The Art of Fluorescence Imaging with Chemical Sensors. Angew. Chem. Int. Ed. 2012, 51, 3532–3554. [Google Scholar] [CrossRef]
- Vendrell, M.; Zhai, D.T.; Er, J.C.; Chang, Y.T. Combinatorial Strategies in Fluorescent Probe Development. Chem. Rev. 2012, 112, 4391–4420. [Google Scholar] [CrossRef]
- Berg, J.M.; Shi, Y.G. The galvanization of biology: A growing appreciation for the roles of zinc. Science 1996, 271, 1081–1085. [Google Scholar] [CrossRef]
- Wu, Z.K.; Chen, Q.Q.; Yang, G.Q.; Mao, C.B.; Liu, J.A.; Yang, S.Y.; Ma, J.S. Novel fluorescent sensor for Zn(II) based on bis(pyrrol-2-yl-methyleneamine) ligands. Sens. Actuators B 2004, 99, 511–515. [Google Scholar] [CrossRef]
- Fahrni, C.J.; O’Halloran, T.V. Aqueous coordination chemistry of quinoline-based fluorescence probes for the biological chemistry of zinc. J. Am. Chem. Soc. 1999, 121, 11448–11458. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Yu, B.R.; Guo, Y.L.; Tang, X.L.; Zhang, H.H.; Liu, W.S. Both Visual and Fluorescent Sensor for Zn2+ Based on Quinoline Platform. Inorg. Chem. 2010, 49, 4002–4007. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.Y.; Li, P.X.; Shi, Z.H.; Tang, X.L.; Chen, C.Y.; Liu, W.S. A Highly Selective Fluorescent Sensor for Distinguishing Cadmium from Zinc Ions Based on a Quinoline Platform. Inorg. Chem. 2012, 51, 9226–9231. [Google Scholar] [CrossRef] [PubMed]
- Mao, Z.Q.; Hu, L.; Dong, X.H.; Zhong, C.; Liu, B.F.; Liu, Z.H. Highly Sensitive Quinoline-Based Two-Photon Fluorescent Probe for Monitoring Intracellular Free Zinc Ions. Anal. Chem. 2014, 86, 6548–6554. [Google Scholar] [CrossRef] [PubMed]
- Song, H.H.; Zhang, Z. A quinoline-based ratiometric fluorescent probe for discriminative detection of Zn2+ and Cd2+ with different binding modes, and its Zn2+ complex for relay sensing of pyrophosphate and adenosine triphosphate. Dyes Pigment. 2019, 165, 172–181. [Google Scholar] [CrossRef]
- Fu, H.R.; Liu, H.Y.; Zhao, L.; Xiao, B.R.; Fan, T.T.; Jiang, Y.Y. A quinoline-based selective ‘turn on’ chemosensor for zinc(II) via quad-core complex, and its application in live cell imaging. Tetrahedron 2019, 75, 130710. [Google Scholar] [CrossRef]
- Yun, D.; Chae, J.; So, H.; Lee, H.; Kim, K.; Kim, C. Sensing of zinc ion and sulfide by a highly practical and water-soluble fluorescence sensor: Applications in test kits and zebrafish. New J. Chem. 2020, 44, 442–449. [Google Scholar] [CrossRef]
- Wu, J.S.; Liu, W.M.; Zhuang, X.Q.; Wang, F.; Wang, P.F.; Tao, S.L.; Zhang, X.H.; Wu, S.K.; Lee, S.T. Fluorescence turn on of coumarin derivatives by metal cations: A new signaling mechanism based on C=N isomerization. Org. Lett. 2007, 9, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, K.; Urano, Y.; Kojima, H.; Nagano, T. Development of an iminocoumarin-based zinc sensor suitable for ratiometric fluorescence imaging of neuronal zinc. J. Am. Chem. Soc. 2007, 129, 13447–13454. [Google Scholar] [CrossRef]
- Mizukami, S.; Okada, S.; Kimura, S.; Kikuchi, K. Design and Synthesis of Coumarin-Based Zn2+ Probes for Ratiometric Fluorescence Imaging. Inorg. Chem. 2009, 48, 7630–7638. [Google Scholar] [CrossRef]
- Cao, D.X.; Liu, Z.Q.; Verwilst, P.; Koo, S.; Jangjili, P.; Kim, J.S.; Lin, W.Y. Coumarin-Based Small-Molecule Fluorescent Chemosensors. Chem. Rev. 2019, 119, 10403–10519. [Google Scholar] [CrossRef]
- Dey, S.; Maity, S.; Pal, K.; Jana, K.; Sinha, C. Oxidative dehydrogenation of a coumarinyl scaffold with Copper ion and metal ion detection in human liver cancer cell (HepG2). Dalton Trans. 2019, 48, 17818–17830. [Google Scholar] [CrossRef]
- Yanfang, S.; Hualai, W.; Hui, B. A coumarin-based turn-on chemosensor for selective detection of Zn (II) and application in live cell imaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 117746. [Google Scholar] [CrossRef]
- Fu, J.; Yao, K.; Li, B.; Mei, H.; Chang, Y.; Xu, K. Coumarin-based colorimetric-fluorescent sensors for the sequential detection of Zn2+ ion and phosphate anions and applications in cell imaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 117790. [Google Scholar] [CrossRef]
- Taki, M.; Wolford, J.L.; O’Halloran, T.V. Emission ratiometric imaging of intracellular zinc: Design of a benzoxazole fluorescent sensor and its application in two-photon microscopy. J. Am. Chem. Soc. 2004, 126, 712–713. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.H.; Xing, Y.; Pang, Y. A Highly Selective Pyrophosphate Sensor Based on ESIPT Turn-On in Water. Org. Lett. 2011, 13, 1362–1365. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.E.; Lee, S.; You, Y.; Baek, K.H.; Ohkubo, K.; Cho, J.; Fukuzumi, S.; Shin, I.; Park, S.Y.; Nam, W. Fluorescent Zinc Sensor with Minimized Proton-Induced Interferences: Photophysical Mechanism for Fluorescence Turn-On Response and Detection of Endogenous Free Zinc Ions. Inorg. Chem. 2012, 51, 8760–8774. [Google Scholar] [CrossRef] [PubMed]
- Asaithambi, G.; Periasamy, V.; Karuppannan, N. Fluorescence sensing response of zinc (II) and pyrophosphate ions by benzoxazole appended dipodal Schiff base. J. Photochem. Photobiol. A Chem. 2019, 370, 75–83. [Google Scholar] [CrossRef]
- He, H.; Ng, D.K.P. Differential Detection of Zn2+ and Cd2+ Ions by BODIPY-Based Fluorescent Sensors. Chem. Asian J. 2013, 8, 1441–1446. [Google Scholar] [CrossRef] [PubMed]
- Ojida, A.; Sakamoto, T.; Inoue, M.; Fujishima, S.; Lippens, G.; Hamachi, I. Fluorescent BODIPY-Based Zn(II) Complex as a Molecular Probe for Selective Detection of Neurofibrillary Tangles in the Brains of Alzheimer’s Disease Patients. J. Am. Chem. Soc. 2009, 131, 6543–6548. [Google Scholar] [CrossRef]
- Hou, J.L.; Song, F.Y.; Wang, L.; Wei, G.; Cheng, Y.X.; Zhu, C.J. In Situ Generated 1:1 Zn(II)-Containing Polymer Complex Sensor for Highly Enantioselective Recognition of N-Boc-Protected Alanine. Macromolecules 2012, 45, 7835–7842. [Google Scholar] [CrossRef]
- Pu, L. Simultaneous Determination of Concentration and Enantiomeric Composition in Fluorescent Sensing. Acc. Chem. Res. 2017, 50, 1032–1040. [Google Scholar] [CrossRef]
- Iqbal, S.; Yu, S.S.; Zhao, F.; Wang, Y.C.; Tian, J.; Jiang, L.; Du, Y.; Yu, X.Q.; Pu, L. Discriminating three biothiols by using one fluorescent probe. Tetrahedron Lett. 2018, 59, 3397–3400. [Google Scholar] [CrossRef]
- Nolan, E.M.; Jaworski, J.; Okamoto, K.I.; Hayashi, Y.; Sheng, M.; Lippard, S.J. QZ1 and QZ2: Rapid, reversible quinoline-derivatized fluoresceins for sensing biological Zn(II). J. Am. Chem. Soc. 2005, 127, 16812–16823. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Wei, G.; Yan, Z.; Guo, B.; Guang, S.; Wu, R.; Xu, H. A multiple fluorescein-based turn-on fluorophore (FHCS) identified for simultaneous determination and living imaging of toxic Al3+ and Zn2+ by improved Stokes shift. Anal. Chim. Acta 2019, 1095, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Das, B.; Jana, A.; Das Mahapatra, A.; Chattopadhyay, D.; Dhara, A.; Mabhai, S.; Dey, S. Fluorescein derived Schiff base as fluorimetric zinc (II) sensor via ‘turn on’ response and its application in live cell imaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 212, 222–231. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.X.; Zhang, X.B.; Zhuo, L.; Gong, Y.J.; Wu, X.Y.; Zhen, J.; He, C.M.; Jian, L.X.; Jing, Z.; Shen, G.L.; et al. Efficient Fluorescence Resonance Energy Transfer-Based Ratiometric Fluorescent Cellular Imaging Probe for Zn2+ Using a Rhodamine Spirolactam as a Trigger. Anal. Chem. 2010, 82, 3108–3113. [Google Scholar] [CrossRef]
- Du, P.W.; Lippard, S.J. A Highly Selective Turn-On Colorimetric, Red Fluorescent Sensor for Detecting Mobile Zinc in Living Cells. Inorg. Chem. 2010, 49, 10753–10755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomat, E.; Lippard, S.J. Ratiometric and Intensity-Based Zinc Sensors Built on Rhodol and Rhodamine Platforms. Inorg. Chem. 2010, 49, 9113–9115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pang, B.J.; Li, C.R.; Yang, Z.Y. A novel chromone and rhodamine derivative as fluorescent probe for the detection of Zn(II) and Al(III) based on two different mechanisms. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 204, 641–647. [Google Scholar] [CrossRef]
- Xue, J.; Tian, L.M.; Yang, Z.Y. A novel rhodamine-chromone Schiff-base as turn-on fluorescent probe for the detection of Zn(II) and Fe(III) in different solutions. J. Photochem. Photobiol. A Chem. 2019, 369, 77–84. [Google Scholar] [CrossRef]
- Tatum, L.A.; Su, X.; Aprahamian, I. Simple Hydrazone Building Blocks for Complicated Functional Materials. Acc. Chem. Res. 2014, 47, 2141–2149. [Google Scholar] [CrossRef]
- Li, K.; Xiang, Y.; Wang, X.Y.; Li, J.; Hu, R.R.; Tong, A.J.; Tang, B.Z. Reversible Photochromic System Based on Rhodamine B Salicylaldehyde Hydrazone Metal Complex. J. Am. Chem. Soc. 2014, 136, 1643–1649. [Google Scholar] [CrossRef]
- Su, X.; Aprahamian, I. Zinc(II)-Regulation of Hydrazone Switch Isomerization Kinetics. Org. Lett. 2013, 15, 5952–5955. [Google Scholar] [CrossRef]
- Stadler, A.M.; Lehn, J.M.P. Coupled Nanomechanical Motions: Metal-Ion-Effected, pH-Modulated, Simultaneous Extension/Contraction Motions of Double-Domain Helical/Linear Molecular Strands. J. Am. Chem. Soc. 2014, 136, 3400–3409. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, A.; Dosen, M.; Chang, M.; Nakajima, K.; Noro, S.; Kato, M. Synthesis of Metal-Hydrazone Complexes and Vapochromic Behavior of Their Hydrogen-Bonded Proton-Transfer Assemblies. J. Am. Chem. Soc. 2010, 132, 15286–15298. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, T.; Hori, Y.; Sato, H.; Wu, S.Q.; Okazawa, A.; Kojima, N.; Yamamoto, T.; Einaga, Y.; Hayami, S.; Horie, Y.; et al. Observation of Proton Transfer Coupled Spin Transition and Trapping of Photoinduced Metastable Proton Transfer State in an Fe(II) Complex. J. Am. Chem. Soc. 2019, 141, 14384–14393. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Q.; Yang, Z.W.; Zhou, M.Y.; Li, Y.; He, J.; Wang, X.H.; Lin, Z.F. Ni(II) and Co(II) complexes of an asymmetrical aroylhydrazone: Synthesis, molecular structures, DNA binding, protein interaction, radical scavenging and cytotoxic activity. RSC Adv. 2017, 7, 41527–41539. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.Q.; Yang, Z.W.; Zhou, M.Y.; Li, Y. Synthesis and crystal structure of new monometallic Ni(II) and Co(II) complexes with an asymmetrical aroylhydrazone: Effects of the complexes on DNA/protein binding property, molecular docking, and in vitro anticancer activity. RSC Adv. 2017, 7, 49404–49422. [Google Scholar] [CrossRef] [Green Version]
- Xie, L.Y.; Zhang, Y.; Xu, H.; Gong, C.D.; Du, X.L.; Li, Y.; Wang, M.; Qin, J. Synthesis, structure and bioactivity of Ni2+ and Cu2+ acylhydrazone complexes. Acta Cryst. C 2019, 75, 927–934. [Google Scholar] [CrossRef]
- Neethu, K.S.; Eswaran, J.; Theetharappan, M.; Nattamai, S.P.B.; Neelakantan, M.; Velusamy, K.M. Organoruthenium (II) complexes featuring pyrazole-linked Schiff base ligands: Crystal structure, DNA/BSA interactions, cytotoxicity and molecular docking. Appl. Organometal. Chem. 2019, 33, 1–16. [Google Scholar] [CrossRef]
- Ray, D.; Foy, J.T.; Hughes, R.P.; Aprahamian, I. A switching cascade of hydrazone-based rotary switches through coordination-coupled proton relays. Nat. Chem. 2012, 4, 757–762. [Google Scholar] [CrossRef]
- Pramanik, S.; Aprahamian, I. Hydrazone Switch-Based Negative Feedback Loop. J. Am. Chem. Soc. 2016, 138, 15142–15145. [Google Scholar] [CrossRef]
- Wu, W.N.; Mao, P.D.; Wang, Y.; Zhao, X.L.; Xu, Z.Q.; Xu, Z.H.; Xue, Y. Quinoline containing acetyl hydrazone: An easily accessible switch-on optical chemosensor for Zn2+. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 188, 324–331. [Google Scholar] [CrossRef]
- Yan, J.; Fan, L.; Qin, J.C.; Li, C.R.; Yang, Z.Y. A novel and resumable Schiff-base fluorescent chemosensor for Zn(II). Tetrahedron Lett. 2016, 57, 2910–2914. [Google Scholar] [CrossRef]
- Ribeiro, N.; Galvão, A.M.; Gomes, C.S.; Ramos, H.; Pinheiro, R.; Saraiva, L.; Ntungwe, E.; Isca, V.; Rijo, P.; Cavaco, I. Naphthoylhydrazones: Coordination to metal ions and biological screening. New J. Chem. 2019, 43, 17801–17818. [Google Scholar] [CrossRef]
- Suganya, S.; Velmathi, S.; Venkatesan, P.; Wu, S.P.; Boobalan, M.S. A highly fluorescent zinc complex of a dipodal N-acyl hydrazone as a selective sensor for H2PO4− ions and application in living cells. Inorg. Chem. Front. 2015, 2, 649–656. [Google Scholar] [CrossRef]
- Zhang, H.h.; Dou, W.; Liu, W.s.; Tang, X.l.; Qin, W.w. A 2-Pyrazoline-Functionalized Zinc Complex: Available N–AgI Interaction Modulating Its Fluorescence Properties. Eur. J. Inorg. Chem. 2011, 2011, 748–753. [Google Scholar] [CrossRef]
- Villada, J.D.; D’Vries, R.F.; Macias, M.; Zuluaga, F.; Chaur, M.N. Structural characterization of a fluorescein hydrazone molecular switch with application towards logic gates. New J. Chem. 2018, 42, 18050–18058. [Google Scholar] [CrossRef]
- Chow, C.F.; Fujii, S.; Lehn, J.M. Metallodynamers: Neutral dynamic metallosupramolecular polymers displaying transformation of mechanical and optical properties on constitutional exchange. Angew. Chem. Int. Ed. 2007, 46, 5007–5010. [Google Scholar] [CrossRef]
- Hutchinson, D.J.; Hanton, L.R.; Moratti, S.C. Metal Ion-Controlled Self-Assembly Using Pyrimidine Hydrazone Molecular Strands with Terminal Hydroxymethyl Groups: A Comparison of Pb(II) and Zn(II) Complexes. Inorg. Chem. 2011, 50, 7637–7649. [Google Scholar] [CrossRef]
- Nosova, E.V.; Chupakhin, A.A.; Lipunova, G.N.; Slepukhin, P.A.; Valova, M.S.; Charushin, V.N. Syntheses, structures, and photophysical properties of Zn-II and Cd-II metal complexes based on benzoylhydrazones. Russ. Chem. B. 2014, 63, 1344–1349. [Google Scholar] [CrossRef]
- Wu, D.Y.; Xie, L.X.; Zhang, C.L.; Duan, C.Y.; Zhao, Y.G.; Guo, Z.J. Quinoline-based molecular clips for selective fluorescent detection of Zn2+. Dalton Trans. 2006, 3528–3533. [Google Scholar] [CrossRef]
- Kubista, M.; Sjoback, R.; Eriksson, S.; Albinsson, B. Experimental Correction for the Inner-Filter Effect in Fluorescence-Spectra. Analyst 1994, 119, 417–419. [Google Scholar] [CrossRef]
- Brouwer, A.M. Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report). Pure. Appl. Chem. 2011, 83, 2213–2228. [Google Scholar] [CrossRef] [Green Version]
- Caprice, K.; Aster, A.; Cougnon, F.B.L.; Kumpulainen, T. Untying the Photophysics of Quinolinium-Based Molecular Knots and Links. Chem. Eur. J. 2020, 26, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Thordarson, P. Determining association constants from titration experiments in supramolecular chemistry. Chem. Soc. Rev. 2011, 40, 5922–5923. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.Y.; Dong, Y.S.; Zhang, B.B.; Liu, F.; Tan, C.Y.; Tan, Y.; Jiang, Y.Y. An efficient quinoline-based fluorescence sensor for zinc(II) and its application in live-cell imaging. Sens. Actuators B 2016, 234, 616–624. [Google Scholar] [CrossRef]
- Li, N.; Xiang, Y.; Chen, X.T.; Tong, A.J. Salicylaldehyde hydrazones as fluorescent probes for zinc ion in aqueous solution of physiological pH. Talanta 2009, 79, 327–332. [Google Scholar] [CrossRef]
- Wu, W.N.; Wu, H.; Wang, Y.; Mao, X.J.; Liu, B.Z.; Zhao, X.L.; Xu, Z.Q.; Fan, Y.C.; Xu, Z.H. A simple hydrazone as a multianalyte (Cu2+, Al3+, Zn2+) sensor at different pH values and the resultant Al3+ complex as a sensor for F−. Rsc Adv. 2018, 8, 5640–5646. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, H.J.; Kim, T.; Kim, H.; Song, C. Solid-State Emissive Metallo-Supramolecular Assemblies of Quinoline-Based Acyl Hydrazone. Sensors 2020, 20, 600. https://doi.org/10.3390/s20030600
Cho HJ, Kim T, Kim H, Song C. Solid-State Emissive Metallo-Supramolecular Assemblies of Quinoline-Based Acyl Hydrazone. Sensors. 2020; 20(3):600. https://doi.org/10.3390/s20030600
Chicago/Turabian StyleCho, Hye Jin, TaeWoo Kim, Hyunwoo Kim, and Changsik Song. 2020. "Solid-State Emissive Metallo-Supramolecular Assemblies of Quinoline-Based Acyl Hydrazone" Sensors 20, no. 3: 600. https://doi.org/10.3390/s20030600
APA StyleCho, H. J., Kim, T., Kim, H., & Song, C. (2020). Solid-State Emissive Metallo-Supramolecular Assemblies of Quinoline-Based Acyl Hydrazone. Sensors, 20(3), 600. https://doi.org/10.3390/s20030600