Research on Remote GPS Common-View Precise Time Transfer Based on Different Ionosphere Disturbances
Abstract
:1. Introduction
2. Methodology
2.1. GPS CV Time Comparison Method and Function Model
2.2. Ionospheric Characteristics and Model Analysis
2.2.1. The Relationship Ionospheric Change and the Local Time
2.2.2. Feature of Three Different Ionosphere Methods
3. Implementations and Evaluation
3.1. The Delays of Three Different Ionospheric Methods under Different Inter-Station Distances
3.2. Process Strategies and Models
3.3. Experiment and Analysis
3.3.1. Experiment without Ionosphere Correction
3.3.2. Experiment with Three Different Ionosphere Correction Methods
3.3.3. Double-Frequency Carrier-Phase Measurements Smooth Pseudo-Range Measurements Method
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Levine, J. A review of time and frequency transfer methods. Metrologia 2008, 45, S162–S174. [Google Scholar] [CrossRef]
- Allan, D.W.; Weiss, M.A. Accurate time and frequency transfer during common-view of a GPS satellite. Electron. Ind. Assoc. 1980. [Google Scholar] [CrossRef] [Green Version]
- Allan, D.W.; Weiss, M.A. Accurate Time and Frequency Transfer during Common-view of a GPS Satellite. In Proceedings of the 34th Annual IEEE Frequency Control Symposium, Philadelphia, PA, USA, 28–30 May 1980. [Google Scholar]
- Li, B. Correction of Geometric Delay Errors for GPS Common View Time Comparisons between Remote Clocks. Comput. Meas. Control 2005, 13, 477–479. [Google Scholar]
- Yokota, S.; Takahashi, Y.; Fujieda, M.; Amagai, J.; Kimura, K.; Hama, S.I. Accuracy of two-way satellite time and frequency transfer via non-geostationary satellites. Metrologia 2005, 42, 344–350. [Google Scholar] [CrossRef]
- Xuhai, Y.; Zhenyuan, H.; Ji, G.; Xiaohui, L.; Zhigang, L.; Haibo, Y. Method of Common-view Time transfer with Transfer mode based on Geostationary Satellite. In Proceedings of the 2012 IEEE International Frequency Control Symposium Proceedings, Baltimore, MD, USA, 21–24 May 2012; pp. 562–565. [Google Scholar]
- Lee, S.W.; Eschutz, B.; Lee, C.B. A study on the common-view and ail-in-view GPS time transfer using carrier-phase measurements. Metrologia 2008, 45, 156–167. [Google Scholar] [CrossRef]
- Lombardi, M.A.; Novick, A.N.; López, J.M.; Boulanger, J.S.; Pelletier, R. The Inter-American metrology system (SIM) common-view GPS comparison network. In Proceedings of the 2005 IEEE International Frequency Control Symposium and Exposition, Vancouver, BC, Canada, 29–31 August 2005; IEEE: Piscataway, NJ, USA, 2005; Volume 8, pp. 691–698. [Google Scholar]
- Defraigne, P.; Bruyninx, C. On the link between GPS pseudorange noise and day-boundary discontinuities in geodetic time transfer solutions. GPS Solut. 2007, 11, 239–249. [Google Scholar] [CrossRef]
- Guyennon, N.; Cerretto, G.; Tavella, P.; Lahaye, F. Further characterization of the time transfer capabilities of precise point positioning (PPP): The sliding batch procedure. IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 2009, 56, 1634–1641. [Google Scholar] [CrossRef] [PubMed]
- Ray, J.; Senior, K. IGS/BIPM pilot project: GPS carrier phase for time/frequency transfer and time scale formation. Metrologia 2003, 40, 270–288. [Google Scholar] [CrossRef]
- Dach, R.; Schildknecht, T.; Hugentobler, U.; Ber-nier, L.-G.; Dudle, G. Continuous geodetic time transfer analysis method. IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 2006, 53, 1250–1259. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Levine, J. An Improvement of RINEX-Shift Algorithm for Continuous GPS Carrier-Phase Time Transfer. In Proceedings of the 2014 ION GNSS+ Meeting, Tampa, FL, USA, 8–12 September 2014. [Google Scholar]
- Parker, T.E.; Matsakis, D. Time and frequency dissemination advances in GPS transfer techniques. GPS World 2004, 11, 32–38. [Google Scholar]
- Dach, R.; Beutler, G.; Hugentobler, U.; Schaer, S.; Schildknecht, T.; Springer, T.; Dudle, G.; Prost, L. Time transfer using GPS carrier phase: Error propagation and results. J. Geod. 2003, 77, 1–14. [Google Scholar] [CrossRef]
- Zhang, V.S.; Parker, T.E.; Weiss, M.A.; Vannicola, F.M. Multi-Channel GPS/GLONASS Common-View between NIST and USNO. In Proceedings of the 2000 IEEE Frequency Control Symposium, St. Petersburg, Russia, 9 June 2000; pp. 598–606. [Google Scholar]
- Xu, G.C. GPS Theory, Algorithms and Applications; Springer: Berlin, Germany, 2003. [Google Scholar]
- Weiss, M. Ionospheric Models and Measurements for Common-View Time Transfer. In Proceedings of the 2002 IEEE Frequency Control Symposium, New Orleans, LA, USA, 31 May 2002. [Google Scholar]
- Okoh, D.; Owolabi, O.; Ekechukwu, C.; Folarin, O.; Arhiwo, G.; Agbo, J.; Bolaji, S.; Rabiu, B. A rergional GNSS-VTEC model over Nigeria using neural networks: A novel approach. Geodesy Geodyn. 2016, 7, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Durmaz, M.; Karslioglu, M.O. Regional vertical total electron content (VTEC) modelingtogether with satellite and receiver differential code biases (DCBs) using semi-parametric multivariate adaptive regression B-splines (SP-BMARS). J. Geod. 2015, 89, 347–360. [Google Scholar] [CrossRef]
- Zhang, B.; Teunissen, P.J.; Yuan, Y.; Zhang, H.; Li, M. Joint estimation of vertical total electron content (VTEC) and satellite differential code biases (SDCBs) using low-cost receivers. J. Geod. 2018, 92, 401–423. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Chen, Y.; Yuan, Y. PPP-RTK based on undifferenced and uncombined observations: Theoretical and practical aspects. J. Geod. 2019, 93, 1011–1024. [Google Scholar] [CrossRef]
- Durmaz, M.; Karslioglu, M.O. Non-parametric regional VTEC modeling with multivariate adaptive regression B-splines. Adv. Space Res. 2011, 48, 1523–1530. [Google Scholar] [CrossRef]
- Hernandez-Pajares, M.; Sanz, J.M.J.J. New approaches in global ionospheric determination using ground GPS data. J. Atmos. Solar Terr. Phys. 1999, 61, 1237–1247. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, P.; Han, W.; Ge, M.; Shi, C. Eliminating negative VTEC in global ionosphere maps using inequality-constrained least square. Adv. Space Res. 2013, 51, 988–1000. [Google Scholar] [CrossRef]
- Fan, G.; Wang, W.; Xi, X. Modeling of ionosphere VTEC using generalized regression neutral network. Acta Geod. Cartogr. Sin. 2010, 39, 16–21. [Google Scholar]
Station A | Station B | Distance/km |
---|---|---|
NANO | ALBH | 109 |
TLSE | ZIMM | 595 |
TLSE | WTZR | 1071 |
VILL | ANKR | 3000 |
Parameter | Process Methods | |
---|---|---|
Observations | Type of data | P1,P2 |
Cut-off elevation | 7° | |
Error process | Carrier-phase wind-up | model correction |
Solid earth tides DCB | model correction model correction | |
Earth rotation parameters | model correction | |
Weight | elevation angle weight | |
Antenna model | IGS08.ATX | |
Troposphere | Saastamoinen model and random walk estimation |
NANO-ALBH | TLSE-ZIMM | TLSE-WTZR | VILL-ANKR | |
---|---|---|---|---|
RMS (ns) | 0.74 | 1.07 | 1.98 | 3.17 |
NANO-ALBH | TLSE-ZIMM | TLSE-WTZR | VILL-ANKR | |
---|---|---|---|---|
Strategy 1 RMS (ns) | 0.62 | 0.68 | 1.41 | 2.59 |
Strategy 2 RMS (ns) | 1.59 | 1.34 | 1.69 | 1.57 |
Strategy 3 RMS (ns) | 0.58 | 0.68 | 0.69 | 1.42 |
NANO-ALBH | TLSE-ZIMM | TLSE-WTZR | VILL-ANKR | |
---|---|---|---|---|
Strategy 4 RMS (ns) | 0.61 | 0.57 | 1.49 | 3.01 |
Strategy 5 RMS (ns) | 0.42 | 0.31 | 0.72 | 0.89 |
Strategy 6 RMS (ns) | 0.14 | 0.26 | 0.52 | 1.41 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Gao, J.; Yu, B.; Sheng, C.; Gan, X. Research on Remote GPS Common-View Precise Time Transfer Based on Different Ionosphere Disturbances. Sensors 2020, 20, 2290. https://doi.org/10.3390/s20082290
Zhang J, Gao J, Yu B, Sheng C, Gan X. Research on Remote GPS Common-View Precise Time Transfer Based on Different Ionosphere Disturbances. Sensors. 2020; 20(8):2290. https://doi.org/10.3390/s20082290
Chicago/Turabian StyleZhang, Jingkui, Jingxiang Gao, Baoguo Yu, Chuanzhen Sheng, and Xingli Gan. 2020. "Research on Remote GPS Common-View Precise Time Transfer Based on Different Ionosphere Disturbances" Sensors 20, no. 8: 2290. https://doi.org/10.3390/s20082290