Continuous In-Line Chromium Coating Thickness Measurement Methodologies: An Investigation of Current and Potential Technology
Abstract
:1. Introduction
1.1. Background of Functional Coatings, Applications, and Coating Thickness Methodologies
1.2. Background of Electrolytic Chromium Coated Steel (ECCS)/Tin Free Steel (TFS)
1.3. Developments and Challenges in ECCS/TFS
1.4. Continuous In-Line Chromium Coating Thickness Measurement
- Non-destructive;
- Non-contact;
- Ability to measure nanometer coating thickness;
- High speed measurement for a continuous production setting;
- Feasibility for measuring multilayer coating structures;
- Feasibility of the methodologies in terms of the substrate material and coating material.
2. Traditional Coating Thickness Test Methods
2.1. Coulometry
2.2. Beta Particle-Backscattering
2.3. Eddy Current
2.4. Magnetic Induction
2.5. X-ray Fluorescence (XRF)
2.6. X-ray Reflectometry (XRR)
2.7. Ultrasonic Detection
2.8. Overview of Traditional Coating Thickness Methodologies
3. Offline Coating Thickness Test Methods
3.1. X-ray Photoelectron Spectroscopy (XPS)
3.2. Scanning Electron Microscopy (SEM)
3.3. Atomic Force Microscopy (AFM)
3.4. Glow Discharge Optical Emission Spectroscopy (GDOES)
3.5. Overview of Offline Coating Thickness Methodologies
4. Potential In-Line Coating Thickness Test Methods
4.1. Thermoelectric Method with Magnetic Readout
- At the junction of dissimilar electrical conductors, a thermoelectric voltage is present when the junctions are at differing temperature.
- As this thermoelectric voltage would create a closed circuit regarding the coating and substrate, a current will flow from the hot junction to the cold junction.
- In turn, this electrical current will generate a magnetic field with a flux density that would extend to the outside of the material and into the air interface.
4.2. Terahertz Time Domain Spectroscopy (THz-TDS)
4.3. Optical Reflectometry
4.4. Optical Interferometry
4.5. Optical Ellipsometry
4.6. Stimulated Brillouin Scattering (SBS)
4.7. Self-Mixing Interferometry (SMI)
4.8. Chromatic Confocal Microscopy (CCM)
4.9. Infrared Thermography
4.10. Overview of Potential In-Line Coating Thickness Methodologies
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bammer, F.; Huemer, F. Inline Thickness Measurement with Imaging Ellipsometry. Available online: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11144/111440H/Inline-thickness-measurement-with-imaging-ellipsometry/10.1117/12.2531940.full?SSO=1 (accessed on 2 April 2021).
- Tator, K.; Tator, K. Coating deterioration. ASM Handb. 2015, 5, 462–473. [Google Scholar]
- Li, L.; Bai, Y.; Li, L.; Wang, S.; Zhang, T. A Superhydrophobic Smart Coating for Flexible and Wearable Sensing Electronics. Adv Mater 2017, 29, 1702517. [Google Scholar] [CrossRef] [PubMed]
- Hosking, N.; Ström, M.; Shipway, P.; Rudd, C. Corrosion resistance of zinc–magnesium coated steel. Corros. Sci. 2007, 49, 3669–3695. [Google Scholar] [CrossRef]
- Jehn, H.A. Improvement of the corrosion resistance of PVD hard coating–substrate systems. Surf. Coat. Technol. 2000, 125, 212–217. [Google Scholar] [CrossRef]
- Allman, A.; Jewell, E.; de Vooys, A.; Hayes, R. Inter-layer adhesion performance of steel packaging materials for food cans under retort conditions. J. Packag. Technol. 2018, 2, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-W.; Tien, S.-K.; Kuo, Y.-C.; Chen, C.-M. The mechanical properties evaluation of the CrN coatings deposited by the pulsed DC reactive magnetron sputtering. Surf. Coat. Technol. 2006, 200, 3330–3335. [Google Scholar] [CrossRef]
- Scrinzi, E.; Rossi, S. The aesthetic and functional properties of enamel coatings on steel. Mater. Des. 2010, 31, 4138–4146. [Google Scholar] [CrossRef]
- Whiteside, P.J.; Chininis, J.A.; Hunt, H.K. Techniques and challenges for characterizing metal thin films with applications in photonics. Coatings 2016, 6, 35. [Google Scholar] [CrossRef] [Green Version]
- Petrilli, C. The basics of coating thickness measurement. Met. Finish. 2001, 99, 8–13. [Google Scholar] [CrossRef]
- Sokolov, A.; Hasikova, J.; Pecerskis, A.; Gostilo, V.; Lee, K.; Jung, H.; Lim, J. Application of Industrial XRF Coating Thickness Analyzer for Phosphate Coating Thickness on Steel. Coatings 2018, 8, 126. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Wang, M.R.; Wang, J.; Shen, M. Tear film measurement by optical reflectometry technique. J. Biomed. Opt. 2014, 19, 027001. [Google Scholar] [CrossRef] [Green Version]
- Sacher, S.; Wahl, P.; Weißensteiner, M.; Wolfgang, M.; Pokhilchuk, Y.; Looser, B.; Thies, J.; Raffa, A.; Khinast, J.G. Shedding light on coatings: Real-time monitoring of coating quality at industrial scale. Int. J. Pharm. 2019, 566, 57–66. [Google Scholar] [CrossRef]
- Wolfgang, M.; Peter, A.; Wahl, P.; Markl, D.; Zeitler, J.A.; Khinast, J.G. At-line validation of optical coherence tomography as in-line/at-line coating thickness measurement method. Int. J. Pharm. 2019, 572, 118766. [Google Scholar] [CrossRef] [PubMed]
- Ghim, Y.-S.; Suratkar, A.; Davies, A. Reflectometry-based wavelength scanning interferometry for thickness measurements of very thin wafers. Opt. Express 2010, 18, 6522–6529. [Google Scholar] [CrossRef] [PubMed]
- Hlubina, P.; Ciprian, D.; Luňáček, J.; Lesňák, M. Thickness of SiO 2 thin film on silicon wafer measured by dispersive white-light spectral interferometry. Appl. Phys. B 2006, 84, 511–516. [Google Scholar] [CrossRef]
- Shallenberger, J.; Cole, D.; Novak, S.; Moore, R.; Edgell, M.; Smith, S.; Hitzman, C.; Kirchhoff, J.; Principe, E.; Biswas, S. Oxide thickness determination by XPS, AES, SIMS, RBS and TEM. Available online: https://ieeexplore.ieee.org/document/812056 (accessed on 2 April 2021).
- Słowik, M.; Cępa, P.; Czapla, K.; Żabiński, P. Steel Packaging Production Process and a Review of New Trends. Arch. Metall. Mater. 2021, 135–143. [Google Scholar]
- Brimacombe, L.; Coleman, N.; Honess, C. Recycling, reuse and the sustainability of steel. Millenium Steel 2005, 446, 3–7. [Google Scholar]
- Melvin, C.; Jewell, E.; de Vooys, A.; Lammers, K.; Mc Murray, N. Surface and adhesion characteristics of current and next generation steel packaging materials. J. Packag. Technol. Res. 2018, 2, 93–103. [Google Scholar] [CrossRef] [Green Version]
- EN 10202:2001 Cold Reduced Tinmill Products—Electrolytic Tinplate and Electrolytic Chromium/Chromium Oxide Coated Steel. Available online: https://standards.iteh.ai/catalog/standards/cen/eb353920-e059-4b31-a83c-2b0deb0069d0/en-10202-2001 (accessed on 2 April 2021).
- Shekhawat, K.; Chatterjee, S.; Joshi, B. Chromium toxicity and its health hazards. Int. J. Adv. Res. 2015, 3, 167–172. [Google Scholar]
- Costa, M.; Klein, C.B. Toxicity and carcinogenicity of chromium compounds in humans. Crit. Rev. Toxicol. 2006, 36, 155–163. [Google Scholar] [CrossRef]
- Sutton, R. Chromium-6 in US Tap Water; Environmental Working Group: Washington, DC, USA, 2010. [Google Scholar]
- Zhang, J.D.; Li, X.L. Chromium pollution of soil and water in Jinzhou. Zhonghua Yu Fang Yi Xue Za Zhi 1987, 21, 262–264. [Google Scholar]
- Giurlani, W.; Berretti, E.; Innocenti, M.; Lavacchi, A. Measuring the Thickness of Metal Coatings: A Review of the Methods. Coatings 2020, 10, 1211. [Google Scholar] [CrossRef]
- Cheng, C.S.; Gomi, H.; Sakata, H. Electrical and optical properties of Cr2O3 films prepared by chemical vapour deposition. Phys. Status Solidi 1996, 155, 417–425. [Google Scholar] [CrossRef]
- Chiu, P.-K.; Liao, Y.-T.; Tsai, H.-Y.; Chiang, D. Effect of electron-beam deposition process variables on the film characteristics of the CrOx films. AIP Adv. 2018, 8, 025016. [Google Scholar] [CrossRef]
- Lozanova, V.; Lalova, A.; Soserov, L.; Todorov, R. Optical and Electrical Properties of Very Thin Chromium Films for Optoelectronic Devices. Available online: https://iopscience.iop.org/article/10.1088/1742-6596/514/1/012003 (accessed on 2 April 2021).
- Brouwer, P. Theory of XRF; PANalytical BV: Almelo, The Netherlands; Available online: https://www.iotcco.com/uploads/VirtualTeaching/Articles/PANanalytical/PANanalytical%20XRF%20theory.pdf (accessed on 2 April 2021).
- Izumidate, A.; Yamamoto, H.; Shiki, S.; Nomura, Y. On–Line System for Measuring Thickness of Ultra-Thin Non-Metallic Layer on Strip Surface. In Information-Control Problems in Manufacturing Technology; Elsevier: Amsterdam, The Netherlands, 1978; pp. 25–32. [Google Scholar]
- Miyazaki, T.; Yamada, Y.; Komine, I. High-Speed 3-Channel Ellipsometer for Industrial Uses. Trans. Soc. Instrum. Control. Eng. 1988, 24, 670–677. [Google Scholar] [CrossRef] [Green Version]
- Rischmueller, J.; Toschke, Y.; Imlau, M.; Schlag, M.; Brüning, H.; Brune, K. Inspection of Trivalent Chromium Conversion Coatings Using Laser Light: The Unexpected Role of Interference on Cold-Rolled Aluminium. Sensors 2020, 20, 2164. [Google Scholar] [CrossRef] [Green Version]
- Fried, M. On-line monitoring of solar cell module production by ellipsometry technique. Thin Solid Film. 2014, 571, 345–355. [Google Scholar] [CrossRef] [Green Version]
- Logothetidis, S.; Georgiou, D.; Laskarakis, A.; Koidis, C.; Kalfagiannis, N. In-line spectroscopic ellipsometry for the monitoring of the optical properties and quality of roll-to-roll printed nanolayers for organic photovoltaics. Sol. Energy Mater. Sol. Cells 2013, 112, 144–156. [Google Scholar] [CrossRef]
- Laskarakis, A.; Logothetidis, S. In-Line Quality Control of Organic Thin Film Fabrication on Rigid and Flexible Substrates. In Ellipsometry of Functional Organic Surfaces and Films; Springer: Berlin/Heidelberg, Germany, 2018; pp. 437–458. [Google Scholar]
- Schneider, M.; Langklotz, U.; Michaelis, A. Thickness determination of thin anodic titanium oxide films-a comparison between coulometry and reflectometry. Surf. Interface Anal. 2011, 43, 1471–1479. [Google Scholar] [CrossRef]
- Szklarska, M.; Dercz, G.; Smołka, A.; Popczyk, M.; Łosiewicz, B. A Coulometric Method By Local Anodic Dissolution for Measuring the Thickness of Ni/Cu Multi-Layer Electrocoatings. Available online: https://www.scientific.net/SSP.228.319 (accessed on 2 April 2021).
- Sophian, A.; Tian, G.; Fan, M. Pulsed eddy current non-destructive testing and evaluation: A review. Chin. J. Mech. Eng. 2017, 30, 500–514. [Google Scholar] [CrossRef] [Green Version]
- AbdAlla, A.N.; Faraj, M.A.; Samsuri, F.; Rifai, D.; Ali, K.; Al-Douri, Y. Challenges in improving the performance of eddy current testing: Review. Meas. Control. 2018, 52, 46–64. [Google Scholar] [CrossRef] [Green Version]
- Hinken, J.H.; Barenthin, B.; Halfpaap, J.; Moebes, C.; Wrobel, H.; Ziep, C.; Hekli, M. Thickness Measurement of Chromium Layers on Stainless Steel Using the Thermoelectric Method with Magnetic Readout(TEM). J. Nondestruct. Test. 2005, 10, 1. [Google Scholar]
- Vrielink, J.A.M.; Tiggelaar, R.M.; Gardeniers, J.G.E.; Lefferts, L. Applicability of X-ray fluorescence spectroscopy as method to determine thickness and composition of stacks of metal thin films: A comparison with imaging and profilometry. Thin Solid Film. 2012, 520, 1740–1744. [Google Scholar] [CrossRef]
- Clark, R.N.; Roush, T.L. Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications. J. Geophys. Res. Solid Earth 1984, 89, 6329–6340. [Google Scholar] [CrossRef]
- Matyi, R.; Hatzistergos, M.; Lifshin, E. X-ray reflectometry analyses of chromium thin films. Thin Solid Film. 2006, 515, 1286–1293. [Google Scholar] [CrossRef]
- Xu, C.; He, L.; Xiao, D.; Ma, P.; Wang, Q. A Novel High-Frequency Ultrasonic Approach for Evaluation of Homogeneity and Measurement of Sprayed Coating Thickness. Coatings 2020, 10, 676. [Google Scholar] [CrossRef]
- Beamish, D. Using ultrasonic coating thickness gauges. Mater. Perform. 2004, 43, 30–33. [Google Scholar]
- Multi-Layers Coating Thicknesses Measurement|Electrolysis. 2021. Available online: https://www.helmut-fischer.com/products/benchtop-measurement-instruments (accessed on 6 May 2021).
- IMS. ß-ray Coating Weight—IMS. 2021. Available online: https://www.ims-gmbh.de/product-catalog/coating-thickness-measurement/cwg-rray/?lang=en (accessed on 6 May 2021).
- Fischerindia.net. 2021. Available online: https://www.fischerindia.net/pdf/betascope.pdf (accessed on 6 May 2021).
- Defelsko.com. Coating Thickness Gages—PosiTector 6000|DeFelsko. 2021. Available online: https://www.defelsko.com/positector-6000#resources (accessed on 6 May 2021).
- XRF Instruments XDL & XDLM|For Chrome Coatings. 2021. Available online: https://www.helmut-fischer.com/products/fischerscope-x-ray-xdl-and-xdlm (accessed on 6 May 2021).
- Rigaku.com. X-ray Reflectometry (XRR)|Rigaku Global Website. 2021. Available online: https://www.rigaku.com/techniques/x-ray-reflectometry-xrr (accessed on 6 May 2021).
- QuintSonic—Ultrasonic Coating Thickness Gauge. [online]. Checkline.eu. Available online: https://www.checkline.eu/prod/coating-thickness-gauges-paint-thickness-gauges/quintsonic#buy-now (accessed on 6 May 2021).
- Feliu, S., Jr.; Barranco, V. XPS study of the surface chemistry of conventional hot-dip galvanised pure Zn, galvanneal and Zn–Al alloy coatings on steel. Acta Mater. 2003, 51, 5413–5424. [Google Scholar] [CrossRef]
- Natarajan, R.; Palaniswamy, N.; Natesan, M.; Muralidharan, V. XPS analysis of passive film on stainless steel. Open Corros. J. 2009, 2, 114–124. [Google Scholar] [CrossRef] [Green Version]
- Hantsche, H. Comparison of basic principles of the surface-specific analytical methods: AES/SAM, ESCA (XPS), SIMS, and ISS with X-ray microanalysis, and some applications in research and industry. Scanning 1989, 11, 257–280. [Google Scholar] [CrossRef]
- Lauritsen, J.V.; Reichling, M. Atomic resolution non-contact atomic force microscopy of clean metal oxide surfaces. J. Phys. Condens. Matter 2010, 22, 263001. [Google Scholar] [CrossRef]
- Nemes-Incze, P.; Osváth, Z.; Kamarás, K.; Biró, L. Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy. Carbon 2008, 46, 1435–1442. [Google Scholar] [CrossRef] [Green Version]
- Crozier, K.; Yaralioglu, G.; Degertekin, F.; Adams, J.; Minne, S.; Quate, C. Thin film characterization by atomic force microscopy at ultrasonic frequencies. Appl. Phys. Lett. 2000, 76, 1950–1952. [Google Scholar] [CrossRef]
- Daviðsdóttir, S.; Shabadi, R.; Galca, A.C.; Andersen, I.H.; Dirscherl, K.; Ambat, R. Investigation of DC magnetron-sputtered TiO2 coatings: Effect of coating thickness, structure, and morphology on photocatalytic activity. Appl. Surf. Sci. 2014, 313, 677–686. [Google Scholar] [CrossRef] [Green Version]
- Marin, E.; Guzman, L.; Lanzutti, A.; Ensinger, W.; Fedrizzi, L. Multilayer Al2O3/TiO2 Atomic Layer Deposition coatings for the corrosion protection of stainless steel. Thin Solid Film. 2012, 522, 283–288. [Google Scholar] [CrossRef]
- Mouche, P.A.; Ang, C.; Koyanagi, T.; Doyle, P.; Katoh, Y. Characterization of PVD Cr, CrN, and TiN coatings on SiC. J. Nucl. Mater. 2019, 527, 151781. [Google Scholar] [CrossRef]
- Kratos.com. Coatings & Thin Film|Kratos. 2021. Available online: https://www.kratos.com/applications/coatings-thin-film (accessed on 6 May 2021).
- Microscopy, E.; Microscopes, E.; Microscopes, D.; ProX, P. Desktop SEM|Phenom ProX|Thermo Fisher Scientific—UK. [online]. Thermofisher.com, 2021. Available online: https://www.thermofisher.com/uk/en/home/electron-microscopy/products/desktop-scanning-electron-microscopes/phenom-prox.html (accessed on 6 May 2021).
- Parksystems.com. Park NX10—Specifications|Park Atomic Force Microscope. 2021. Available online: https://www.parksystems.com/index.php/products/small-sample-afm/park-nx10/specifications (accessed on 6 May 2021).
- Horiba.com. Detail. 2021. Available online: https://www.horiba.com/en_en/products/detail/action/show/Product/gd-profiler-2tm-1401/ (accessed on 6 May 2021).
- Edwards, J.E.; Otterson, D.W. Tech Talk: (5) Temperature Measurement Basics. Meas. Control. 2014, 47, 276–282. [Google Scholar] [CrossRef]
- Hinken, J.H.; Tavrin, Y. Basics of the Thermoelectric Effect with Magnetic Readout. Available online: http://www.bookbootusers.co.uk/N6e.pdf (accessed on 2 April 2021).
- Bahk, J.-H.; Favaloro, T.; Shakouri, A. Thin film thermoelectric characterization techniques. Annu. Rev. Heat Transf. 2013, 16, 51–99. [Google Scholar] [CrossRef]
- Roth, D.J.; Cosgriff, L.M.; Harder, B.; Zhu, D.; Martin, R.E. Absolute Thickness Measurements on coatIngs without Prior Knowledge of Material Properties Using Terahertz Energy. Available online: https://searchworks.stanford.edu/view/10747265 (accessed on 2 April 2021).
- Taschin, A.; Bartolini, P.; Tasseva, J.; Torre, R. THz time-domain spectroscopic investigations of thin films. Meas. Control. 2018, 118, 282–288. [Google Scholar] [CrossRef] [Green Version]
- Bayati, E.; Winebrenner, D.P.; Arbab, M.H. Measuring the Thickness of Ultra-Thin Film Layers Using Terahertz Time-Domain Polarimetry (THz-TDP). Available online: https://ieeexplore.ieee.org/document/8067109 (accessed on 2 April 2021).
- Tu, W.; Zhong, S.; Shen, Y.; Incecik, A. Nondestructive testing of marine protective coatings using terahertz waves with stationary wavelet transform. Ocean. Eng. 2016, 111, 582–592. [Google Scholar] [CrossRef] [Green Version]
- Döring, S.; Hertlein, F.; Bayer, A.; Mann, K. EUV reflectometry for thickness and density determination of thin film coatings. Appl. Phys. A 2012, 107, 795–800. [Google Scholar] [CrossRef]
- Hirth, F.; Rossner, M.; Jakobi, M.; Koch, A.W. Impact of Angle Ranges on Thickness Resolution in Thin Film Reflectometry. Available online: https://ieeexplore.ieee.org/document/5326107 (accessed on 2 April 2021).
- Kim, K.; Kim, S.; Kwon, S.; Pahk, H.J. Volumetric thin film thickness measurement using spectroscopic imaging reflectometer and compensation of reflectance modeling error. Int. J. Precis. Eng. Manuf. 2014, 15, 1817–1822. [Google Scholar] [CrossRef]
- Urbanek, M.; Spousta, J.; Navratil, K.; Szotkowski, R.; Chmelík, R.; Buček, M.; Šikola, T. Instrument for thin film diagnostics by UV spectroscopic reflectometry. Surf. Interface Anal. Int. J. Devoted Dev. Appl. Tech. Anal. Surf. Interfaces Thin Film. 2004, 36, 1102–1105. [Google Scholar] [CrossRef]
- Kim, K.; Kwon, S.; Pahk, H.J. Fast Analysis of Film Thickness in Spectroscopic Reflectometry using Direct Phase Extraction. Curr. Opt. Photonics 2017, 1, 29–33. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Zheng, C. Illumination Model for Two-Layer Thin Film Structures. Available online: https://dl.acm.org/doi/10.5220/0005261401990206 (accessed on 2 April 2021).
- Mohammed, Z.H. The Fresnel Coefficient of Thin Film Multilayer Using Transfer Matrix Method TMM. Available online: https://iopscience.iop.org/article/10.1088/1757-899X/518/3/032026 (accessed on 2 April 2021).
- Ghim, Y.-S.; Kim, S.-W. Fast, precise, tomographic measurements of thin films. Appl. Phys. Lett. 2007, 91, 091903. [Google Scholar] [CrossRef]
- Hernández, M.; Juarez, A.; Hernandez, R. Interferometric thickness determination of thin metallic films. Superf. Y Vacío 1999, 9, 283–285. [Google Scholar]
- De Groot, P.J.; de Lega, X.C.; Fay, M.F. Transparent Film Profiling and Analysis by Interference Microscopy. Available online: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/7064/70640I/Transparent-film-profiling-and-analysis-by-interference-microscopy/10.1117/12.794936.short (accessed on 2 April 2021).
- Gao, F.; Muhamedsalih, H.; Jiang, X. Surface and thickness measurement of a transparent film using wavelength scanning interferometry. Opt. Express 2012, 20, 21450–21456. [Google Scholar] [CrossRef] [Green Version]
- Jo, T.; Kim, K.; Kim, S.; Pahk, H. Thickness and surface measurement of transparent thin-film layers using white light scanning interferometry combined with reflectometry. J. Opt. Soc. Korea 2014, 18, 236–243. [Google Scholar] [CrossRef] [Green Version]
- Manallah, A.; Bouafia, M.; Meguellati, S. Optical Coherence Tomography as Film Thickness Measurement Technique. Available online: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/9450/945006/Optical-coherence-tomography-as-film-thickness-measurement-technique/10.1117/12.2061387.short (accessed on 2 April 2021).
- Jeong, H.; Park, B.; Kim, Y.; Kim, H.; Ghim, Y.-S.; You, J.; Kim, S.-W. Oxide Thickness Profile Measurement by Dispersive White-Light Interferometry in CMP Process. Available online: https://ieeexplore.ieee.org/document/5760426 (accessed on 2 April 2021).
- Tompkins, H.G.; Tasic, S.; Baker, J.; Convey, D. Spectroscopic ellipsometry measurements of thin metal films. Surf. Interface Anal. 2000, 29, 179–187. [Google Scholar] [CrossRef]
- Maulana, L.Z.; Megasari, K.; Suharyadi, E.; Anugraha, R.; Abraha, K.; Santoso, I. Inexpensive Home-Made Single Wavelength Ellipsometer (λ = 633 nm) for Measuring the Optical Constant of Nanostructured Materials. IOP Conf. Ser. Mater. Sci. Eng. 2017, 202, 012031. [Google Scholar] [CrossRef]
- Pascu, R.; Dinescu, M. Spectroscopic Ellipsometry. Rom. Rep. Phys. 2012, 64, 135–142. [Google Scholar]
- Cain, J.P.; Robie, S.; Zhang, Q.; Singh, B.; Emami, I. Combined Use of X-ray Reflectometry and Spectroscopic Ellipsometry for Characterization of Thin Film Optical Properties. Available online: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/6155/61550P/Combined-use-of-x-ray-reflectometry-and-spectroscopic-ellipsometry-for/10.1117/12.660088.short (accessed on 2 April 2021).
- Hauge, P.; Dill, F. Design and operation of ETA, an automated ellipsometer. IBM J. Res. Dev. 1973, 17, 472–489. [Google Scholar] [CrossRef]
- Garcia-Caurel, E.; De Martino, A.; Gaston, J.P.; Yan, L. Application of spectroscopic ellipsometry and Mueller ellipsometry to optical characterization. Appl. Spectrosc. 2013, 67, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Taya, S.A.; El-Agez, T.M.; Alkanoo, A.A. Ellipsometric configurations using a phase retarder and a rotating polarizer and analyzer at any speed ratio. Chin. Phys. B 2012, 21, 110701. [Google Scholar] [CrossRef]
- Tompkins, H.G.; Hilfiker, J. Spectroscopic Ellipsometry. Available online: https://www.momentumpress.net/books/spectroscopic-ellipsometry-practical-application-thin-film-characterization (accessed on 2 April 2021).
- Pang, W.; Every, A.; Comins, J.; Stoddart, P.; Zhang, X.; Crowhurst, J.; Pietersen, D. Brillouin Scattering as a Tool for Characterizing Surfaces, Interfaces and Thin Films. In Review of Progress in Quantitative Nondestructive Evaluation; Springer: Berlin/Heidelberg, Germany, 1998; pp. 1315–1322. [Google Scholar]
- Ballmann, C.W.; Thompson, J.V.; Traverso, A.J.; Meng, Z.; Scully, M.O.; Yakovlev, V.V. Stimulated Brillouin Scattering Microscopic Imaging. Sci. Rep. 2015, 5, 18139. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Zhang, S.; Tan, Y.; Sun, L. Simultaneous measurement of refractive-index and thickness for optical materials by laser feedback interferometry. Rev. Sci. Instrum. 2014, 85, 083111. [Google Scholar] [CrossRef]
- Fathi, M.T.; Donati, S. Thickness measurement of transparent plates by a self-mixing interferometer. Opt. Lett. 2010, 35, 1844–1846. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, S.; Long, X. Thickness and refractive-index measurement of birefringent material by laser feedback technique. Opt. Lett. 2013, 38, 998–1000. [Google Scholar] [CrossRef] [PubMed]
- Boettcher, T.; Gronle, M.; Osten, W. Multi-layer topography measurement using a new hybrid single-shot technique: Chromatic Confocal Coherence Tomography (CCCT). Meas. Sci. 2017, 25, 10204–10213. [Google Scholar] [CrossRef]
- Niese, S.; Quodbach, J. Application of a chromatic confocal measurement system as new approach for in-line wet film thickness determination in continuous oral film manufacturing processes. Int. J. Pharm. 2018, 551, 203–211. [Google Scholar] [CrossRef]
- Lyda, W.; Gronle, M.; Fleischle, D.; Mauch, F.; Osten, W. Advantages of chromatic-confocal spectral interferometry in comparison to chromatic confocal microscopy. Meas. Sci. Technol. 2012, 23, 054009. [Google Scholar] [CrossRef]
- Decker, C.A.; Mackin, T.J. Measuring film thickness using infrared imaging. Thin Solid Film. 2005, 473, 196–200. [Google Scholar] [CrossRef]
- Filmetrics, I. In-Line Thickness Measurement System—Filmetrics F32. [online]. Filmetrics.com, 2021. Available online: https://www.filmetrics.com/thickness-measurement/f32 (accessed on 7 May 2021).
- Thorlabs.com. Fiber-Coupled Terahertz Spectrometer. 2021. Available online: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=4713 (accessed on 7 May 2021).
- Thorlabs.com. Ganymede™ Series SD-OCT Systems. 2021. Available online: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=8214 (accessed on 7 May 2021).
- Horiba.com. Detail. 2021. Available online: https://www.horiba.com/gbr/products/detail/action/show/Product/uvisel-plus-in-situ-1362/ (accessed on 7 May 2021).
- NANOVEA. IN-LINE PROFILER—QC ROUGHNESS—NANOVEA. 2021. Available online: https://nanovea.com/instruments/in-line-profiler/ (accessed on 7 May 2021).
- Stressphotonics.com. 2021. Available online: https://www.stressphotonics.com/Product_Pages/pdf_files/DT_1000.pdf (accessed on 7 May 2021).
- Bugnicourt, E.; Kehoe, T.; Latorre, M.; Serrano, C.; Philippe, S.; Schmid, M. Recent Prospects in the Inline Monitoring of Nanocomposites and Nanocoatings by Optical Technologies. Nanomaterials 2016, 6, 150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Methodology | A1 | A2 | A3 | A4 | A5 | A6 | A7 |
Thickness ranges | 1 nm–50 µm | 1–800 µm | 1–10,000 µm | 1–10,000 µm | 0.5 nm–10 µm | 1 nm–1 µm | 10–7500 µm |
Measurement accuracy (%) | 0.1–0.5 | 0–5 | 0.1–0.7 | 1–3 | 0.2–0.5 | 0.33–0.65 | 0.53–0.7 |
Multi-layer | ✓ | ✓ | X | X | ✓ | ✓ | ✓ |
Sampling rate | 1–500 m | 0.5–15 s | 0.6–1 s | 0.6–1 s | 0.5–100 s | 1 s–60 m | 0.5–2.5 s |
Detection area (ø) | 1.5–3.2 mm | 0.63–20 mm | 5–8 mm | 5–8 mm | 0.1–15 mm | 2 mm | 5 mm |
Commercial availability | [47] | [48,49] | [50] | [50] | [51] | [52] | [53] |
Typical cost (GBP) | >3000 | Unspecified | >1000 | >1000 | >35,000 | >30,000 | >1000 |
Non-contact | X | ✓ | ✓ | X | ✓ | ✓ | X |
Non-destructive | X | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Materials | ✓ | X | X | ✓ | ✓ | ✓ | X |
Methodology | B1 | B2 | B3 | B4 |
Thickness ranges | 0.5–20 nm | 0.1 nm–2 µm | 0.1–100 nm | 1 nm–50 µm |
Measurement accuracy (%) | 0.05 | 0.2 | 2–5 | <5 |
Multi-layer | ✓ | ✓ | ✓ | ✓ |
Sampling rate | 1 m–4 h | 1–5 m | 5 m–1 h | 3 s–12 m |
Detection area (ø) | 10 µm–5 mm | 50 nm–1 cm | 10–100 µm | Unspecified |
Commercial availability | [63] | [64] | [65] | [66] |
Typical cost (GBP) | >200,000 | >50,000 | >20,000 | Unspecified |
Non-contact | ✓ | ✓ | X | X |
Non-destructive | ✓ | ✓ | ✓ | X |
Materials | ✓ | ✓ | ✓ | ✓ |
Methodology | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 |
Thickness ranges | 1–200 µm | 300–1400 µm | 0.5 nm–3 mm | 0.1 nm–10 µm | 0.5 nm–1 mm | >1 µm | >1 µm | >1 µm | >1 µm |
Measurement accuracy (%) | 10 | 0.43 | 0.1–0.2 | <1 | 0.1 | Unspecified | Unspecified | <3% | Unspecified |
Multi-layer | Unspecified | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Sampling frequency | 0.1–4 s | >50 ms | 0.1–5 s | <3 s | 0.1–300 s | Unspecified | Unspecified | <1 s | <1 s |
Detection area (ø) | Unspecified | Unspecified | 50 µm–1 mm | Unspecified | 50 µm–1 mm | Unspecified | Unspecified | Unspecified | Unspecified |
Commercial availability | Unspecified | [106] | [105] | [107] | [108] | Unspecified | Unspecified | [109] | [110] |
Typical cost (GBP) | Unspecified | Unspecified | >13,000 | >45,000 | >40,000 | Unspecified | Unspecified | >10,000 | >10,000 |
Non-contact | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Non-destructive | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Materials | ✓ | ✓ | ✓ | ✓ | ✓ | X | X | ✓ | ✓ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jones, A.; Uggalla, L.; Li, K.; Fan, Y.; Willow, A.; Mills, C.A.; Copner, N. Continuous In-Line Chromium Coating Thickness Measurement Methodologies: An Investigation of Current and Potential Technology. Sensors 2021, 21, 3340. https://doi.org/10.3390/s21103340
Jones A, Uggalla L, Li K, Fan Y, Willow A, Mills CA, Copner N. Continuous In-Line Chromium Coating Thickness Measurement Methodologies: An Investigation of Current and Potential Technology. Sensors. 2021; 21(10):3340. https://doi.org/10.3390/s21103340
Chicago/Turabian StyleJones, Adam, Leshan Uggalla, Kang Li, Yuanlong Fan, Ashley Willow, Christopher A. Mills, and Nigel Copner. 2021. "Continuous In-Line Chromium Coating Thickness Measurement Methodologies: An Investigation of Current and Potential Technology" Sensors 21, no. 10: 3340. https://doi.org/10.3390/s21103340