Human-Machine Shared Driving Control for Semi-Autonomous Vehicles Using Level of Cooperativeness †
Abstract
:1. Introduction
- Using a new concept of level of human-machine cooperativeness, a shared driving control scheme is proposed to manage effectively the conflict issue between the human driver and the automation.
- For the shared control design, we propose a new Lyapunov-based LPV control method with a reduced conservatism to handle the dynamic control authority factor and the time-varying vehicle speed. Moreover, with a guaranteed -gain performance, the proposed shared controller can improve the lane keeping, the vehicle stability, and the human-machine conflict management.
2. Driver-in-the-Loop Vehicle Modeling
2.1. Road-Vehicle Dynamics
2.2. Driver Dynamics
2.3. Integrated Driver-in-the-Loop Vehicle Model
3. Cooperative Framework for Haptic Driver-Automation Interaction
- Fully cooperative: The driver and the automation have same driving objectives, i.e., .
- Non-cooperative: The human driver and the automation have opposite objectives, which results in a human-machine conflict issue, such as during emergency maneuvers executed by the driver. In such a situation, the cooperative index is also negative, i.e., . The experimental threshold is determined based on shared control evaluations.
4. LPV Control Design with Guarantee on -Gain Performance
4.1. Control Problem Formulation
- (P1)
- For zero-disturbance system, i.e., , for , the zero solution of system (45) is exponentially stable with a decay rate .
- (P2)
- The closed-loop system (45) is input-to-state stable with respect to the amplitude-bounded disturbance .
- (P3)
- If , for , the state is uniformly bounded for and . Moreover, we have
4.2. LPV Control Design with -Gain Performance
4.3. Application to Human-Automation Shared Driving Control
5. Validations and Performance Analysis
5.1. Validation Setup and Performance Criteria
5.2. Shared Control Performance Evaluation
5.3. Control Robustness w.r.t. Modeling Uncertainty
- Auto: Autonomous controller with no driver, i.e., .
- Auto-FA: Autonomous controller with driver present and full assist always provided.
- HMI-FA: Shared DiL controller with full assist always provided, i.e., .
6. Conclusions and Future Works
Author Contributions
Funding
Conflicts of Interest
References
- Pappalardo, G.; Cafiso, S.; Graziano, A.D.; Severino, A. Decision tree method to analyze the performance of lane support systems. Sustainability 2021, 13, 846. [Google Scholar] [CrossRef]
- Ducaju, J.-M.S.; Llobregat, J.-J.S.; Cuenca, A.; Tomizuka, M. Autonomous ground vehicle lane-keeping LPV model-based control: Dual-rate state estimation and comparison of different real-time control strategies. Sensors 2021, 21, 1531. [Google Scholar] [CrossRef]
- Rajamani, R. Vehicle Dynamics and Control; Springer: Boston, MA, USA, 2012. [Google Scholar]
- Guo, H.; Shen, C.; Zhang, H.; Chen, H.; Jia, R. Simultaneous trajectory planning and tracking using an MPC method for cyber-physical systems: A case study of obstacle avoidance for an intelligent vehicle. IEEE Trans. Ind. Inform. 2018, 14, 273–283. [Google Scholar] [CrossRef]
- Nguyen, A.-T.; Rath, J.J.; Guerra, T.-M.; Palhares, R.; Zhang, H. Robust set-invariance based fuzzy output tracking control for vehicle autonomous driving under uncertain lateral forces and steering constraints. IEEE Trans. Intell. Transp. Syst. 2020. [Google Scholar] [CrossRef]
- Luo, Q.; Nguyen, A.; Fleming, J.; Zhang, H. Unknown input observer-based approach for distributed tube-based model predictive control of heterogeneous vehicle platoons. IEEE Trans. Veh. Technol. 2021, 70, 2930–2944. [Google Scholar] [CrossRef]
- Shi, Q.; Zhang, H. Fault diagnosis of an autonomous vehicle with an improved SVM algorithm subject to unbalanced datasets. IEEE Trans. Ind. Electron. 2020. [Google Scholar] [CrossRef]
- Trubia, S.; Severino, A.; Curto, S.; Arena, F.; Pau, G. Smart roads: An overview of what future mobility will look like. Infrastructures 2020, 5, 107. [Google Scholar] [CrossRef]
- Malik, S.; Khan, M.; El-Sayed, H. Collaborative autonomous driving—A survey of solution approaches and future challenges. Sensors 2021, 21, 3783. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wen, D.; Zheng, N.; Shen, L. Cognitive Cars: A New Frontier for ADAS Research. IEEE Trans. Intell. Transp. Syst. 2012, 13, 395–407. [Google Scholar] [CrossRef]
- Ji, X.; Yang, K.; Na, X.; Lv, C.; Liu, Y.; Liu, Y. Feedback game-based shared control scheme design for emergency collision avoidance: A fuzzy-linear quadratic regulator approach. J. Dyn. Syst. Meas. Control 2019, 141, 081005. [Google Scholar] [CrossRef]
- Zhang, W.; Thao, Y.; Zhang, X.; Lin, F. Adaptive shared control strategy for lane changing assistance system via multi-mode switching. J. Franklin Inst. 2020, 357, 13304–13325. [Google Scholar] [CrossRef]
- Sentouh, C.; Nguyen, A.-T.; Benloucif, M.; Popieul, J.C. Driver-automation cooperation oriented approach for shared control of lane keeping assist systems. IEEE Trans. Control Syst. Technol. 2019, 27, 1962–1978. [Google Scholar] [CrossRef]
- Abbink, D.; Carlson, T.; Mudler, M.; Winter, J.; Aminravan, F.; Gibo, T.; Boer, E. A topology of shared control systems—Finding common ground in diversity. IEEE Trans. Hum. Mach. Syst. 2018, 48, 509–525. [Google Scholar] [CrossRef]
- Wang, W.; Na, X.; Cao, D.; Gong, J.; Xi, J.; Xing, Y.; Wang, F. Decision-making in driver-automation shared control: A review and perspectives. IEEE CAA J. Autom. Sin. 2020. [Google Scholar] [CrossRef]
- Marcano, M.; Diaz, S.; Pere, J.; Irigoyen, E. A review of shared control for automated vehicles: Theory and applications. IEEE Trans. Hum. Mach. Syst. 2020. [Google Scholar] [CrossRef]
- Mars, F.; Deroo, M.; Hoc, J. Analysis of human-machine cooperation when driving with different degrees of haptic shared control. IEEE Trans. Haptics 2014, 7, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, A.; Jayakumar, P.; Gillespie, B. Shared control architectures for vehicle steering. Cogn. Technol. Work 2019, 21, 699–709. [Google Scholar] [CrossRef]
- Wu, Y.; Wei, H.; Chen, X.; Xu, J.; Sharma, R. Adaptive authority allocation of human-automation shared control for autonomous vehicle. Int. J. Automot. Technol. 2020, 21, 541–553. [Google Scholar] [CrossRef]
- Martinez-Garcia, M.; Kalawsky, R.S.; Gordon, T.; Smith, T.; Meng, Q.; Flemisch, F. Communication and interaction with semi-autonomous ground vehicles by force control steering. IEEE Trans. Cybern. 2020. [Google Scholar] [CrossRef]
- Wada, T. Simultaneous achievement of driver assistance and skill development in shared and cooperative controls. Cogn. Technol. Work 2018, 21, 631–642. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, Y.; Kashiba, Y.; Yamada, N.; Suetomi, T.; Nishikawa, K.; Nouzawa, T.; Tsuji, T. Active-steering control system based on human hand impedance properties. In Proceedings of the International Conference on Systems, Man and Cybernetics, Istanbul, Turkey, 10–13 October 2010; pp. 1697–1702. [Google Scholar]
- Yimin, C.; Hu, C.; Wang, J. Impaired driver assistance control with gain-scheduling composite nonlinear feedback for vehicle trajectory tracking. J. Dyn. Syst. Meas. Control. 2020, 142. [Google Scholar] [CrossRef]
- Huang, C.; Hang, P.; Wu, J.; Nguyen, A.-T.; Lv, C. Reference-free human-automation shared control for obstacle avoidance of automated vehicles. In Proceedings of the International Conference on Systems, Man, and Cybernetics (SMC), Toronto, ON, Canada, 11–14 October 2020; pp. 4398–4403. [Google Scholar]
- Nguyen, A.-T.; Sentouh, C.; Popieul, J.-C. Driver-automation cooperative approach for shared steering control under multiple system constraints: Design and experiments. IEEE Trans. Ind. Electron. 2017, 64, 3819–3830. [Google Scholar] [CrossRef]
- Bencloucif, M.; Nguyen, A.-T.; Sentouh, C.; Popieul, J.-C. Cooperative trajectory planning for haptic shared control between driver and automation in highway driving. IEEE Trans. Ind. Electron. 2019, 66, 9846–9857. [Google Scholar] [CrossRef]
- Saito, T.; Wada, T.; Sonoda, K. Control Authority Transfer Method for Automated-to-Manual Driving Via a Shared Authority Mode. IEEE Trans. Intell. Veh. 2018, 3, 198–207. [Google Scholar] [CrossRef]
- Lv, C.; Wang, H.; Cao, D.; Zhao, Y.; Sullman, M.; Auger, D.J.; Brighton, J.; Matthias, R.; Skrypchuk, L.; Mouzakitis, A. A novel control framework of haptic take-over system for automated vehicles. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; pp. 1596–1601. [Google Scholar]
- Li, M.; Song, X.; Cao, H.; Wang, J.; Huang, Y.; Hu, C.; Wang, H. Shared control with a novel dynamic authority allocation strategy based on game theory and driving safety field. Mech. Syst. Signal Process. 2019, 124, 199–216. [Google Scholar] [CrossRef]
- Rath, J.-J.; Sentouh, C.; Popieul, J.-C. Personalised lane keeping assist strategy: Adaptation to driving style. IET Control Theory Appl. 2019, 13, 106–115. [Google Scholar] [CrossRef]
- Flemisch, F.; Nashashibi, F.; Rauch, N.; Schieben, A.; Sebastien, G.; Temme, G.; Resende, P.; Vanholme, B.; Loper, C.; Thomaidis, G.; et al. Towards highly automated driving: Intermediate report on the HAVEit-joint system. In Proceedings of the 3rd European Road Transport Research Arena Europe 2010, Brussels, Belgium, 7–10 June 2010. [Google Scholar]
- Heard, J.; Harriott, C.; Adams, J. A survey of workload assessment algorithms. IEEE Trans. Hum. Mach. Syst. 2018, 48, 434–451. [Google Scholar] [CrossRef]
- Rath, J.-J.; Sentouh, C.; Popieul, J.-C. Robust lane keeping control in automated vehicles: A driver-in-the loop approach. In Proceedings of the 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 3327–3332. [Google Scholar]
- Nguyen, A.-T.; Sentouh, C.; Popieul, J.-C. Sensor reduction for driver-automation shared steering control via an adaptive authority allocation strategy. IEEE ASME Trans. Mechatron. 2018, 23, 5–16. [Google Scholar] [CrossRef]
- Sentouh, C.; Nguyen, A.-T.; Rath, J.-J.; Floris, J.; Popieul, J.-C. Human–machine shared control for vehicle lane keeping systems: A Lyapunov-based approach. IET Intell. Transp. Syst. 2019, 13, 63–71. [Google Scholar] [CrossRef]
- Boink, R.; Passen, M.; Mudler, M.; Abbink, D. Understanding and reducing conflicts between driver and haptic shared control. In Proceedings of the 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), San Diego, CA, USA, 5–8 October 2014; pp. 1510–1515. [Google Scholar]
- Li, P.; Nguyen, A.-T.; Du, H.; Wang, Y.; Zhang, H. Polytopic LPV approaches for intelligent automotive systems: State of the art and future challenges. Mech. Syst. Signal Process. 2021, 161, 107931. [Google Scholar] [CrossRef]
- Hoffmann, C.; Werner, H. A survey of linear parameter-varying control applications validated by experiments or high-fidelity simulations. IEEE Trans. Control Syst. Technol. 2014, 23, 416–433. [Google Scholar] [CrossRef]
- Sentouh, C.; Chevrel, P.; Mars, F.; Claveau, F. A sensorimotor driver model for steering control. In Proceedings of the 2009 IEEE International Conference on Systems, Man and Cybernetics, San Antonio, TX, USA, 11–14 October 2009; pp. 2462–2467. [Google Scholar]
- Mars, F.; Chevrel, P. Modelling human control of steering for the design of advanced driver assistance systems. Annu. Rev. Control 2017, 44, 292–302. [Google Scholar] [CrossRef]
- Martinez-Garcia, M.; Gordon, T. A new model of human steering using far-point error perception and multiplicative control. In Proceedings of the 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Miyazaki, Japan, 7–10 October 2018; pp. 1245–1250. [Google Scholar]
- Tanaka, K.; Wang, H. Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Boyd, S.; Ghaoui, L.E.; Feron, E.; Balakrishnan, V. Linear Matrix Inequalities in System and Control Theory; SIAM: Philadelphia, PA, USA, 1994. [Google Scholar]
- Nguyen, A.-T.; Guerra, T.-M.; Sentouh, C.; Zhang, H. Unknown input observers for simultaneous estimation of vehicle dynamics and driver torque: Theoretical design and hardware experiments. IEEE ASME Trans. Mechatron. 2019, 24, 2508–2518. [Google Scholar] [CrossRef]
- Nguyen, A.-T.; Sentouh, C.; Zhang, H.; Popieul, J.-C. Fuzzy static output feedback control for path following of autonomous vehicles with transient performance improvements. IEEE Trans. Intell. Transp. Syst. 2020, 21, 3069–3079. [Google Scholar] [CrossRef]
- Ahn, C.; Peng, H.; Tseng, H. Robust estimation of road frictional coefficient. IEEE Trans. Control Syst. Technol. 2013, 21, 1–13. [Google Scholar] [CrossRef]
Symbol | Description | Value |
---|---|---|
m | total mass of the vehicle | 2025 kg |
distance from CoG to front axle | m | |
distance from CoG to rear axle | m | |
look-ahead distance | 5 m | |
tire length contact | m | |
vehicle yaw moment of inertia | 2800 kgm | |
steering moment of inertia | kgm | |
steering gear ratio | ||
steering system damping | N/rad | |
front cornering stiffness | 42,500 N/rad | |
rear cornering stiffness | 57,000 N/rad | |
driver preview time | s | |
compensatory lead time | s | |
compensatory lag time | s | |
lag time | s | |
driver anticipatory parameter | 5.15 | |
driver compensatory parameter | 1.96 |
Road | Vehicle Uncertainties | Controller | [m] | [rad] | [rad/s] | [rad/s] | PRatio [–] | SC [Nm] | SW [Nmrad/s] | [Nm] |
---|---|---|---|---|---|---|---|---|---|---|
5% | Auto | 0.545 | 0.075 | 2.024 | 0.286 | – | – | – | – | |
Auto-FA | 0.499 | 0.071 | 1.971 | 0.278 | 0.041 | 0.071 | −2.356 | −9.335 | ||
HMI-FA | 0.536 | 0.065 | 1.593 | 0.263 | 0.039 | 0.087 | −1.549 | −3.371 | ||
CITDN | 0.510 | 0.063 | 1.555 | 0.259 | 0.039 | 0.083 | −1.378 | −3.351 | ||
25% | Auto | 0.540 | 0.074 | 2.029 | 0.283 | – | – | – | – | |
Auto-FA | 0.487 | 0.069 | 2.015 | 0.272 | 0.042 | 0.074 | −2.201 | −8.252 | ||
HMI-FA | 0.517 | 0.064 | 1.865 | 0.256 | 0.039 | 0.089 | −2.123 | −2.891 | ||
CITDN | 0.509 | 0.063 | 1.585 | 0.257 | 0.037 | 0.087 | −1.324 | −2.944 | ||
5% | Auto | 0.6287 | 0.0792 | 2.3133 | 0.3018 | – | – | – | – | |
Auto-FA | 0.578 | 0.076 | 2.625 | 0.297 | 0.056 | 0.054 | −3.247 | −23.558 | ||
HMI-FA | 0.668 | 0.072 | 2.265 | 0.282 | 0.055 | 0.066 | −2.335 | −15.474 | ||
CITDN | 0.633 | 0.066 | 2.123 | 0.278 | 0.053 | 0.066 | −2.198 | −14.575 | ||
25% | Auto | 0.6247 | 0.0785 | 2.3901 | 0.3002 | – | – | – | – | |
Auto-FA | 0.553 | 0.073 | 2.813 | 0.287 | 0.054 | 0.059 | −3.061 | −23.041 | ||
HMI-FA | 0.612 | 0.066 | 2.220 | 0.273 | 0.049 | 0.077 | −2.612 | −8.214 | ||
CITDN | 0.629 | 0.067 | 2.169 | 0.276 | 0.049 | 0.071 | −2.095 | −13.032 |
Road | Vehicle Uncertainties | Controller | [m] | [rad] | [rad/s] | [rad/s] | PRatio [–] | SC [Nm] | SW [Nmrad/s] | [Nm] |
---|---|---|---|---|---|---|---|---|---|---|
5% | Auto-FA | 0.503 | 0.074 | 2.049 | 0.278 | 0.041 | 0.071 | −2.357 | −10.143 | |
HMI-FA | 0.539 | 0.065 | 1.592 | 0.263 | 0.039 | 0.086 | −1.458 | −3.492 | ||
CITDN | 0.514 | 0.063 | 1.545 | 0.259 | 0.039 | 0.083 | −1.379 | −3.336 | ||
25% | Auto-FA | 0.503 | 0.071 | 2.056 | 0.278 | 0.041 | 0.071 | −2.364 | −10.505 | |
HMI-FA | 0.538 | 0.065 | 1.593 | 0.263 | 0.039 | 0.086 | −1.459 | −3.662 | ||
CITDN | 0.511 | 0.063 | 1.551 | 0.259 | 0.039 | 0.083 | −1.381 | −3.501 | ||
5% | Auto-FA | 0.583 | 0.076 | 2.589 | 0.296 | 0.056 | 0.053 | −3.522 | −23.388 | |
HMI-FA | 0.673 | 0.075 | 2.307 | 0.283 | 0.056 | 0.067 | −2.324 | −16.577 | ||
CITDN | 0.633 | 0.066 | 2.108 | 0.0278 | 0.053 | 0.066 | −2.197 | −14.545 | ||
25% | Auto-FA | 0.583 | 0.076 | 2.581 | 0.295 | 0.056 | 0.053 | −3.523 | −22.195 | |
HMI-FA | 0.673 | 0.075 | 2.311 | 0.283 | 0.056 | 0.066 | −2.321 | −17.376 | ||
CITDN | 0.633 | 0.066 | 2.115 | 0.278 | 0.054 | 0.066 | −2.195 | −15.133 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, A.-T.; Rath, J.J.; Lv, C.; Guerra, T.-M.; Lauber, J. Human-Machine Shared Driving Control for Semi-Autonomous Vehicles Using Level of Cooperativeness . Sensors 2021, 21, 4647. https://doi.org/10.3390/s21144647
Nguyen A-T, Rath JJ, Lv C, Guerra T-M, Lauber J. Human-Machine Shared Driving Control for Semi-Autonomous Vehicles Using Level of Cooperativeness . Sensors. 2021; 21(14):4647. https://doi.org/10.3390/s21144647
Chicago/Turabian StyleNguyen, Anh-Tu, Jagat Jyoti Rath, Chen Lv, Thierry-Marie Guerra, and Jimmy Lauber. 2021. "Human-Machine Shared Driving Control for Semi-Autonomous Vehicles Using Level of Cooperativeness " Sensors 21, no. 14: 4647. https://doi.org/10.3390/s21144647