Machine Learning Techniques for Differential Diagnosis of Vertigo and Dizziness: A Review
Abstract
:1. Introduction
2. Data Collection and Analysis for Machine Learning in a Specialist Vertigo Clinic
3. Advantages and Disadvantages of Machine Learning Techniques and Selection Criteria of Articles for Literature Review
3.1. Advantages and Disadvantages of Machine Learning Techniques
3.2. Selection Criteria of Articles for Literature Review
4. Machine Learning Approaches Used in the Differential Diagnosis of Vertigo
4.1. Machine Learning Applications on ONE Dataset
4.2. Machine Learning Applications to Questionnaire-Based Information and Multi-Feature of DHI and DizzyReg Dataset
4.3. Machine Learning Applications to Nystagmus and Vestibulo-Ocular Reflex (VOR) Tests
4.4. Machine Learning Applications to Posturography and Gait Features
5. Discussion and Potential Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baloh, R.W.; Honrubia, V. The peripheral vestibular system. Contemp. Neurol. Ser. 1979, 18, 23–46. [Google Scholar]
- Brandt, T.; Dieterich, M. The dizzy patient: Don’t forget disorders of the central vestibular system. Nat. Rev. Neurol. 2017, 13, 352–362. [Google Scholar] [CrossRef]
- Choi, K.-D.; Lee, H.; Kim, J.-S.; Choi, K.-D.; Lee, H.; Kim, J.-S. Ischemic syndromes causing dizziness and vertigo. Handb. Clin. Neurol. 2016, 137, 317–340. [Google Scholar] [CrossRef] [PubMed]
- Strupp, M.; Dieterich, M.; Brandt, T. The Treatment and Natural Course of Peripheral and Central Vertigo. Dtsch. Aerzteblatt Online 2013, 110, 505–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, J.Y.; Lee, S.H.; Kim, J.S. Central vertigo. Curr. Opin. Neurol. 2018, 31, 81–89. [Google Scholar] [CrossRef]
- Lempert, T.; Olesen, J.; Furman, J.; Waterston, J.; Seemungal, B.; Carey, J.; Bisdorff, A.; Versino, M.; Evers, S.; Newman-Toker, D. Vestibular migraine: Diagnostic criteria. J. Vestib. Res. 2012, 22, 167–172. [Google Scholar] [CrossRef] [Green Version]
- Hotson, J.R.; Baloh, R.W. Acute Vestibular Syndrome. N. Engl. J. Med. 1998, 339, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-Y.; Park, J.S.; Kim, M.-B. Clinical Characteristics of Acute Vestibular Neuritis According to Involvement Site. Otol. Neurotol. 2019, 40, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Saber Tehrani, A.S.; Kattah, J.C.; Kerber, K.A.; Gold, D.R.; Zee, D.S.; Urrutia, V.C.; Newman-Toker, D.E. Diagnosing Stroke in Acute Dizziness and Vertigo: Pitfalls and Pearls. Stroke 2018, 49, 788–795. [Google Scholar] [CrossRef]
- Cha, Y.-H.; Kane, M.J.; Baloh, R.W. Familial Clustering of Migraine, Episodic Vertigo, and Ménière’s Disease. Otol. Neurotol. 2008, 29, 93–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beh, S.C.; Masrour, S.; Smith, S.V.; Friedman, D.I. The Spectrum of Vestibular Migraine: Clinical Features, Triggers, and Examination Findings. Headache J. Head Face Pain 2019, 59, 727–740. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Sanchez, J.M.; Lopez-Escamez, J.A. Menière’s disease. Handb. Clin. Neurol. 2016, 137, 257–277. [Google Scholar] [PubMed]
- von Brevern, M.; Radtke, A.; Clarke, A.H.; Lempert, T. Migrainous vertigo presenting as episodic positional vertigo. Neurology 2004, 62, 469–472. [Google Scholar] [CrossRef] [PubMed]
- Lechner, C.; Taylor, R.L.; Todd, C.; MacDougall, H.; Yavor, R.; Halmagyi, G.M.; Welgampola, M.S. Causes and characteristics of horizontal positional nystagmus. J. Neurol. 2014, 261, 1009–1017. [Google Scholar] [CrossRef]
- Neuhauser, H.K. The epidemiology of dizziness and vertigo. Handb. Clin. Neurol. 2016, 137, 67–82. [Google Scholar] [CrossRef]
- Radtke, A.; von Brevern, M.; Neuhauser, H.; Hottenrott, T.; Lempert, T. Vestibular migraine: Long-term follow-up of clinical symptoms and vestibulo-cochlear findings. Neurology 2012, 79, 1607–1614. [Google Scholar] [CrossRef]
- Fernández, L.; Breinbauer, H.A.; Delano, P.H. Vertigo and Dizziness in the Elderly. Front. Neurol. 2015, 6, 144. [Google Scholar] [CrossRef] [Green Version]
- Muir, S.W.; Berg, K.; Chesworth, B.; Klar, N.; Speechley, M. Quantifying the magnitude of risk for balance impairment on falls in community-dwelling older adults: A systematic review and meta-analysis. J. Clin. Epidemiol. 2010, 63, 389–406. [Google Scholar] [CrossRef]
- Tehrani, A.S.S.; Coughlan, D.; Hsieh, Y.H.; Mantokoudis, G.; Korley, F.K.; Kerber, K.A.; Frick, K.D.; Newman-Toker, D.E. Rising Annual Costs of Dizziness Presentations to U.S. Emergency Departments. Acad. Emerg. Med. 2013, 20, 689–696. [Google Scholar] [CrossRef] [Green Version]
- Tarnutzer, A.A.; Lee, S.H.; Robinson, K.A.; Wang, Z.; Edlow, J.A.; Newman-Toker, D.E. ED misdiagnosis of cerebrovascular events in the era of modern neuroimaging: A meta-analysis. Neurology 2017, 88, 1468–1477. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, S.A.; Vivar, G.; Navab, N.; Möhwald, K.; Maier, A.; Hadzhikolev, H.; Brandt, T.; Grill, E.; Dieterich, M.; Jahn, K.; et al. Modern machine-learning can support diagnostic differentiation of central and peripheral acute vestibular disorders. J. Neurol. 2020, 267, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Heydarov, S.; İkizoğlu, S.; Şahin, K.; Kara, E.; Çakar, T.; Ataş, A. Performance comparison of ML methods applied to motion sensory information for identification of vestibular system disorders. In Proceedings of the 2017 10th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 30 November–2 December 2017. [Google Scholar]
- Juhola, M. On machine learning classification of otoneurological data. Stud. Health Technol. Inform. 2008, 136, 211. [Google Scholar]
- Exarchos, T.; Rigas, G.; Bibas, A.; Kikidis, D.; Nikitas, C.; Wuyts, F.; Ihtijarevic, B.; Maes, L.; Cenciarini, M.; Maurer, C.; et al. Mining balance disorders’ data for the development of diagnostic decision support systems. Comput. Biol. Med. 2016, 77, 240–248. [Google Scholar] [CrossRef] [Green Version]
- Juhola, M.; Aalto, H.; Hirvonen, T. Machine Learning Recognition of Otoneurological Patients by Means of the Results of Ves-tibulo-Ocular Signal Analysis. In Proceedings of the 2008 21st IEEE International Symposium on Computer-Based Medical Systems, Jyvaskyla, Finland, 17–19 June 2008. [Google Scholar]
- Pradhan, C.; Wuehr, M.; Akrami, F.; Neuhaeusser, M.; Huth, S.; Brandt, T.; Jahn, K.; Schniepp, R. Automated classification of neurological disorders of gait using spatio-temporal gait parameters. J. Electromyogr. Kinesiol. 2015, 25, 413–422. [Google Scholar] [CrossRef]
- Ahmadi, S.A.; Vivar, G.; Frei, J.; Nowoshilow, S.; Bardins, S.; Brandt, T.; Krafczyk, S. Towards computerized diagnosis of neurological stance disorders: Data mining and machine learning of posturography and sway. J. Neurol. 2019, 266, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Kizoğlu, S.; Heydarov, S. Accuracy comparison of dimensionality reduction techniques to determine significant features from IMU sensor-based data to diagnose vestibular system disorders. Biomed. Signal Process. Control 2020, 61, 101963. [Google Scholar] [CrossRef]
- Ben Slama, A.; Sahli, H.; Mouelhi, A.; Marrakchi, J.; Trabelsi, H.; Sayadi, M. Machine learning based approach for vestibular disorder diagnostic in videonystagmography. Biomed. Res. 2019, 30. [Google Scholar] [CrossRef] [Green Version]
- Varpa, K.; Joutsijoki, H.; Iltanen, K.; Juhola, M. Applying one-vs-one and one-vs-all classifiers in k-nearest neighbour method and support vector machines to an otoneurological multi-class problem. Stud. Health Technol. Inform. 2011, 169, 579–583. [Google Scholar]
- Siermala, M.; Juhola, M.; Kentala, E. Neural network classification of otoneurological data and its visualization. Comput. Biol. Med. 2008, 38, 858–866. [Google Scholar] [CrossRef]
- Shilaskar, S.; Ghatol, A.; Chatur, P. Medical decision support system for extremely imbalanced datasets. Inf. Sci. 2017, 384, 205–219. [Google Scholar] [CrossRef]
- Masankaran, L.; Viyanon, W.; Mahasittiwat, V. Classification of Benign Paroxysmal Positioning Vertigo Types from Dizziness Handicap Inventory using Machine Learning Techniques. In Proceedings of the 2018 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), Bangkok, Thailand, 21–24 October 2018; Volume 3, pp. 209–214. [Google Scholar] [CrossRef]
- Gupta, D.; Borah, P.; Sharma, U.M.; Prasad, M. Data-driven mechanism based on fuzzy Lagrangian twin parametric-margin support vector machine for biomedical data analysis. Neural Comput. Appl. 2021, 1–11. [Google Scholar] [CrossRef]
- Lim, E.-C.; Park, J.H.; Jeon, H.J.; Kim, H.-J.; Lee, H.-J.; Song, C.-G.; Hong, S.K. Developing a Diagnostic Decision Support System for Benign Paroxysmal Positional Vertigo Using a Deep-Learning Model. J. Clin. Med. 2019, 8, 633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q. Dynamic Uncertain Causality Graph for Knowledge Representation and Reasoning: Discrete DAG Cases. J. Comput. Sci. Technol. 2012, 27, 1–23. [Google Scholar] [CrossRef]
- Groezinger, M.; Huppert, D.; Strobl, R.; Grill, E. Development and validation of a classification algorithm to diagnose and differentiate spontaneous episodic vertigo syndromes: Results from the DizzyReg patient registry. J. Neurol. 2020, 267, 160–167. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, H.; Liu, Y.; Zheng, S.; Liu, Z.; Li, Y.; Zhao, Y.; Zhu, Z. Deep learning based torsional nystagmus detection for dizziness and vertigo diagnosis. Biomed. Signal Process. Control. 2021, 68, 102616. [Google Scholar] [CrossRef]
- Richburg, H.A.; Povinelli, R.J.; Friedland, D.R. Direct-to-Patient Survey for Diagnosis of Benign Paroxysmal Positional Vertigo. In Proceedings of the 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), Orlando, FL, USA, 17–20 December 2018. [Google Scholar]
- Dong, C.; Wang, Y.; Zhang, Q.; Wang, N. The methodology of Dynamic Uncertain Causality Graph for intelligent diagnosis of vertigo. Comput. Methods Programs Biomed. 2014, 113, 162–174. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.; Choudhury, A.; Gupta, U.; Singh, P.; Prasad, M. Computational approach to clinical diagnosis of diabetes disease: A comparative study. Multimed. Tools Appl. 2021, 80, 30091–30116. [Google Scholar] [CrossRef]
- Lin, C.-T.; Prasad, M.; Saxena, A. An Improved Polynomial Neural Network Classifier Using Real-Coded Genetic Algorithm. IEEE Trans. Syst. Man Cybern. Syst. 2015, 45, 1389–1401. [Google Scholar] [CrossRef]
- Dong, C.; Wang, Y.; Zhou, J.; Zhang, Q.; Wang, N. Differential Diagnostic Reasoning Method for Benign Paroxysmal Positional Vertigo Based on Dynamic Uncertain Causality Graph. Comput. Math. Methods Med. 2020, 2020, 1–13. [Google Scholar] [CrossRef]
- Kentala, E.; Pyykkö, I.; Auramo, Y.; Laurikkala, J.; Juhola, M. Otoneurological expert system for vertigo. Acta Otolaryngol. 1999, 119, 517–521. [Google Scholar]
- Rasku, J.; Pyykkö, I.; Levo, H.; Kentala, E.; Manchaiah, V.; Bragazzi, N.; Laplante-Lévesque, A. Disease Profiling for Computerized Peer Support of Ménière’s Disease. JMIR Rehabil. Assist. Technol. 2015, 2, e9. [Google Scholar] [CrossRef] [Green Version]
- Priesol, A.J.; Cao, M.; Brodley, C.E.; Lewis, R.F. Clinical Vestibular Testing Assessed with Machine-Learning Algorithms. JAMA Otolaryngol. Neck Surg. 2015, 141, 364–372. [Google Scholar] [CrossRef] [Green Version]
- Grill, E.; Müller, T.; Becker-Bense, S.; Gürkov, R.; Heinen, F.; Huppert, D.; Zwergal, A.; Strobl, R. DizzyReg: The prospective patient registry of the German Center for Vertigo and Balance Disorders. J. Neurol. 2017, 264, 34–36. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, H.; Yao, Y.; Liu, J.; Sun, X.; Gu, D. Walking stability in patients with benign paroxysmal positional vertigo: An objective assessment using wearable ac-celerometers and machine learning. J. Neuroeng. Rehab. 2021, 18, 56. [Google Scholar] [CrossRef] [PubMed]
- Suthaharan, S. Support Vector Machine. In Machine Learning Models and Algorithms for Big Data Classification; Springer: Boston, MA, USA, 2016; pp. 207–235. [Google Scholar]
- Anguita, D.; Ghio, A.; Greco, N.; Oneto, L.; Ridella, S. Model selection for support vector machines: Advantages and disadvantages of the Machine Learning Theory. In Proceedings of the 2010 International Joint Conference on Neural Networks (IJCNN), Barcelona, Spain, 18–23 July 2010. [Google Scholar]
- Berrar, D. Bayes’ Theorem and Naive Bayes Classifier. In Encyclopedia of Bioinformatics and Computational Biology; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Yang, F.J. An implementation of naive bayes classifier. In Proceedings of the 2018 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 12–14 December 2018; pp. 301–306. [Google Scholar]
- Safavian, S.R.; Landgrebe, D. A survey of decision tree classifier methodology. IEEE Trans. Syst. Man Cybern. 1991, 21, 660–674. [Google Scholar] [CrossRef] [Green Version]
- Podgorelec, V.; Kokol, P.; Stiglic, B.; Rozman, I. Decision Trees: An Overview and Their Use in Medicine. J. Med. Syst. 2002, 26, 445–463. [Google Scholar] [CrossRef]
- Liang, L.; Cai, Z.; Wang, D.; Jiang, S.l. Survey of Improving K-Nearest-Neighbor for Classification. In Proceedings of the Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007), Haikou, China, 24–27 August 2007. [Google Scholar]
- Tayeb, S.; Pirouz, M.; Sun, J.; Hall, K.; Chang, A.; Li, J.; Song, C.; Chauhan, A.; Ferra, M.; Sager, T.; et al. Toward predicting medical conditions using k-nearest neighbors. In Proceedings of the 2017 IEEE International Conference on Big Data (Big Data), Boston, MA, USA, 11–14 December 2017; pp. 3897–3903. [Google Scholar] [CrossRef]
- Zhang, G.P. Neural networks for classification: A survey. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 2000, 30, 451–462. [Google Scholar] [CrossRef] [Green Version]
- Seyedali, M. Genetic Algorithm. In Evolutionary Algorithms and Neural Networks; Springer: Cham, Switzerland, 2019; pp. 43–55. [Google Scholar]
- Kentala, E.; Pyykkö, I.; Laurikkala, J.; Juhola, M. Discovering diagnostic rules from a neurotologic database with genetic algorithms. Ann. Otol. Rhinol. Laryngol. 1999, 108, 948–954. [Google Scholar] [CrossRef] [PubMed]
- Varpa, K.; Iltanen, K.; Juhola, M. Machine learning method for knowledge discovery experimented with otoneurological data. Comput. Methods Programs Biomed. 2008, 91, 154–164. [Google Scholar] [CrossRef]
- Laurikkala, J.; Kentala, E.; Juhola, M.; Pyykkö, I.; Lammi, S. Usefulness of imputation for the analysis of incomplete otoneurologic data. Int. J. Med. Inform. 2000, 58-59, 235–242. [Google Scholar] [CrossRef]
- Miettinen, K.; Juhola, M. Classification of otoneurological cases according to Bayesian probabilistic models. J. Med. Syst. 2008, 34, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Varpa, K.; Iltanen, K.; Siermala, M.; Juhola, M. Attribute weighting with Scatter and instance-based learning methods evaluated with otoneurological data. Int. J. Data Sci. 2017, 2, 173–204. [Google Scholar] [CrossRef]
- Varpa, K.; Iltanen, K.; Juhola, M. Genetic Algorithm Based Approach in Attribute Weighting for a Medical Data Set. J. Comput. Med. 2014, 2014, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Joutsijoki, H.; Varpa, K.; Iltanen, K.; Juhola, M. Machine learning approach to an otoneurological classification problem. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; Volume 2013, pp. 1294–1297. [Google Scholar] [CrossRef]
- Juhola, M.; Viikki, K.; Laurikkala, J.; Pyykkö, I.; Kentala, E. On classification capability of neural networks: A case study with otoneurological data. Stud. Health Technol. Inform. 2001, 84, 474–478. [Google Scholar]
- Strobl, R.; Grözinger, M.; Zwergal, A.; Huppert, D.; Filippopulos, F.; Grill, E. A Set of Eight Key Questions Helps to Classify Common Vestibular Disorders—Results from the DizzyReg Patient Registry. Front. Neurol. 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.J.; Jang, S.-K.; Kim, Y.-H.; Lee, E.-J.; Chang, J.Y.; Kwon, S.U.; Kim, J.S.; Kang, D.-W. Diagnosis of Acute Central Dizziness with Simple Clinical Information Using Machine Learning. Front. Neurol. 2021, 12, 691057. [Google Scholar] [CrossRef]
- Krafczyk, S.; Tietze, S.; Swoboda, W.; Valkovič, P.; Brandt, T. Artificial neural network: A new diagnostic posturographic tool for disorders of stance. Clin. Neurophysiol. 2006, 117, 1692–1698. [Google Scholar] [CrossRef]
- Kamogashira, T.; Fujimoto, C.; Kinoshita, M.; Kikkawa, Y.; Yamasoba, T.; Iwasaki, S. Prediction of Vestibular Dysfunction by Applying Machine Learning Algorithms to Postural Instability. Front. Neurol. 2020, 11, 7. [Google Scholar] [CrossRef]
- Bartolomeo, M.; Biboulet, R.; Pierre, G.; Mondain, M.; Uziel, A.; Venail, F. Value of the video head impulse test in assessing vestibular deficits following vestibular neuritis. Eur. Arch. Oto-Rhino-Laryngol. 2013, 271, 681–688. [Google Scholar] [CrossRef]
- Lee, S.U.; Kim, H.J.; Choi, J.Y.; Kim, J.S. Ictal downbeat nystagmus in Ménière disease: A cross-sectional study. Neurology 2020, 95, e2409–e2417. [Google Scholar] [CrossRef] [PubMed]
- Hunter, J.; Patel, N.S.; O’Connell, B.P.; Carlson, M.L.; Shepard, N.T.; McCaslin, D.L.; Wanna, G.B. Cervical and Ocular VEMP Testing in Diagnosing Superior Semicircular Canal Dehiscence. Otolaryngol. Neck Surg. 2017, 156, 917–923. [Google Scholar] [CrossRef] [PubMed]
- Filippopulos, F.M.; Huppert, D.; Brandt, T.; Hermann, M.; Franz, M.; Fleischer, S.; Grill, E. Computerized clinical decision system and mobile application with expert support to optimize management of vertigo in primary care: Study protocol for a pragmatic cluster-randomized controlled trial. J. Neurol. 2020, 267, 45–50. [Google Scholar] [CrossRef] [PubMed]
Algorithm | Advantages | Disadvantages |
---|---|---|
Decision Trees | Requires less pre-processing, does not need normalization and scaling, no need of data imputation | Instability, complex calculations, high training time, resource expensive, and does not work with continuous values |
Support Vector Machines | Efficient with distinctive classes, high dimensional data spaces, memory efficient, excellent for few data samples | Poor performance with large datasets, sensitive to noise and overlapping classes, underperforms when no. of features >no. of samples |
K-Nearest Neighbor | No training period, faster execution, supports dynamic data addition, needs only two parameters | Poor performance with large datasets, inefficient with high dimensional data, scaling, and normalization required, sensitive to noise, outliers, and missing values |
Naïve Bayes | Time inexpensive, supports multi-label classification, needs less training samples, best suited for categorical data | Less applicability in real-life scenarios due to feature independence, assigns zero probability to missing values |
Genetic Algorithms | Highly accurate, provides optimal results, robust and straightforward | Computation expensive, requires high parameter optimization |
Neural Networks | Automatic feature extraction, robust to data variations, scalable to large data volumes, adaptive to varying problems | Requires large training set, resource expensive, high computation time, complex to comprehend and optimize |
Year | ML Algorithm | Target | Sample Size | Evaluation | Performance | |||
---|---|---|---|---|---|---|---|---|
Acc. | Sens. | Spec. | F1 | |||||
2000 [61] | Discriminant analysis and regression imputation | VS vs. BPPV vs. MD vs. SD vs. TV vs. VNE | 564 | 176 test cases | 95 | 95 | 90 | - |
2008 [23] | k-nearest neighbor (k = 5) | VS vs. BPPV vs. MD vs. SD vs TV vs. VNE | 815 | 10-fold CV | 93.5 | 85.45 | - | - |
Linear discriminant analysis | 95.5 | 91.81 | - | - | ||||
K-means clustering (k = 20) | 92.9 | 84.83 | - | - | ||||
Decision trees | 89.4 | 71.45 | - | - | ||||
Multi-layer perceptron network | 95.0 | 90.46 | - | - | ||||
Kohonen network | 92.7 | 82.95 | - | - | ||||
2008 [31] | Perceptron neural networks | ANE vs. BPPV vs. MD vs. SD vs. TV vs. VNE vs. BRV vs. CL vs. VES | 815 | 815 | 95 | 85 | 83 | - |
2010 [62] | Naïve Bayes | ANE vs. BPPV vs. MD vs. SD vs. TV vs. VNE | 815 | 10-fold CV | 97 | 90 | - | - |
tree augmented naïve Bayes | 97 | 89 | - | - | ||||
General Bayesian network | 97 | 91 | - | - | ||||
2011 [30] | k-nearest neighbor (k = 5) | ANE vs. BPPV vs. MD vs. SD vs. TV vs. VNE vs. BRV vs. CL vs. VES | 1030 | 10-fold CV | 79.8 | 77.9 | - | - |
One-vs.-one support vector Machine-linear | 77.4 | 82.4 | - | - | ||||
One-vs.-one k-nearest neighbor (k = 5) | 82.4 | 88.2 | - | - | ||||
One-vs.-all support vector machines-rbf | 79.4 | 78.6 | - | - | ||||
One-vs.-all k-nearest neighbor (k = 5) | 78.8 | 77.7 | - | - | ||||
2013 [65] | Half and half Support vector Machine-linear | ANE vs. BPPV vs. MD vs. SD vs. TV vs. VNE vs. BRV | 1030 | 10-fold CV | 76.9 | - | - | - |
Half and half k- nearest neighbor (k = 9) | 61.5 | - | - | - | ||||
Half and half naïve Bayes | 65.9 | - | - | - | ||||
Multinomial logistic regression | 68.3 | - | - | - | ||||
2014 [64] | Genetic algorithm class weighted k-nearest neighbor (k = 9) | ANE vs. BPPV vs. MD vs. SD vs. TV vs. VNE vs. BRV | 951 | 10-fold CV | 68.8 | 64.1 | - | - |
Genetic algorithm One-vs.-all weighted k-nearest neighbor (k = 3) | 79.5 | 74.9 | - | - | ||||
2016 [32] | Feed forward neural networks | ANE vs. BPPV vs. MD vs. SD vs. TV vs. VNE | 815 | 5-fold CV | 84 | 84 | 97 | 84 |
Grid-based SVM | 91 | 91 | 98 | 91 | ||||
Forward feature selection-based SVM | 90 | 90 | 98 | 90 | ||||
Genetic algorithm-based SVM | 92 | 92 | 98 | 92 | ||||
Modified PSO algorithm-based SVM | 94 | 94 | 99 | 94 | ||||
2017 [63] | Weighted one-vs-all k-nearest neighbor (k = 5) | ANE vs. BPPV vs. MD vs. SD vs. TV vs. VNE vs. BRV | 1030 | 10-fold CV | 79.7 | 75.2 | - | - |
Year | ML Algorithm | Target | Sample Size | Evaluation | Performance | |||
---|---|---|---|---|---|---|---|---|
Acc. | Sens. | Spec. | F1 | |||||
2016 [24] | Decision trees enhanced with Adaboost and expert knowledge | ANE vs. t-BPPV vs. a-BPPV vs. VP vs. VM vs. MD vs. CL vs. PPD vs. VNE vs. UPD vs. BVD vs. others | 985 | 10-fold CV | 82.65 | 81.61 | 83.6 | - |
2018 [39] | Decision tree | BPPV | 45 | 45 training cases | 92 | 88 | 95 | - |
2018 [33] | Gaussian naïve Bayes | BPPV | 114 | 10-fold CV | 73.91 | - | - | 72.73 |
K-nearest neighbor (k = 11) | 69.57 | - | - | 69.68 | ||||
Support vector machines—poly | 65.22 | - | - | 64.53 | ||||
Random forest | 65.22 | - | - | 65.35 | ||||
2020 [37] | Deep neural networks | VM vs. MD | 346 | 10-fold CV | 98.2 | 87.65 | - | - |
Boosted decision trees | 88.9 | 63.9 | - | - | ||||
2020 [21] | Logistic regression | Vestibular stroke vs. Peripheral AVS | 40 | 5-fold CV | 52 | - | - | - |
Multi-geometric matrix completion | 82 | - | - | - | ||||
2021 [68] | Support vector machine | Central vs. non-central dizziness | 3116 | 1310 test cases | - | 99.2 | 11.6 | - |
Logistic regression | - | 99.2 | 6.8 | - | ||||
Random forest | - | 99.2 | 6.0 | - | ||||
Catboost | - | 100 | 4.6 | - | ||||
2021 [67] | Classification and regression trees | MD vs. BPPV vs. VM vs. UVP vs. BVP vs. VP | 1066 | 10-fold CV | 42.2 | - | - | - |
Year | ML Algorithm | Target | Sample Size | Evaluation | Performance | |||
---|---|---|---|---|---|---|---|---|
Acc. | Sens. | Spec. | F1 | |||||
2008 [25] | K-nearest neighbor (k = 5) | ANE | 44 | 10-fold CV | 87.7 | 79.2 | 94.2 | - |
Linear discriminant analysis | 87.6 | 81.1 | 92.5 | - | ||||
Quadratic discriminant analysis | 87 | 84.9 | 88.6 | - | ||||
Naïve Bayes | 88.3 | 82.7 | 92.5 | - | ||||
K-means clustering (k = 2) | 85 | 78.2 | 90.2 | - | ||||
Decision trees | 89.8 | 83.6 | 94.7 | - | ||||
Multi-layer perceptron networks (16 hidden nodes) | 88.8 | 82.9 | 93.4 | - | ||||
Kohonen networks 7 × 7 nodes | 87.6 | 78.9 | 94.2 | - | ||||
support vector machines (radial) | 89.4 | 82.7 | 94.6 | - | ||||
2019 [29] | K-nearest neighbor | VNE | 60 | 5-fold CV | 85.3 | 86.5 | 87.6 | - |
Artificial neural network | 86.8 | 88.3 | 89.5 | - | ||||
Fischer-support vector machine | 94.1 | 93.2 | 95.9 | - | ||||
2019 [35] | Convolutional neural network | PC-BPPV vs. HC-BPPV vs. T-BPPV | 3457 | 10-fold CV | - | 80.8 | 97.1 | 79.4 |
2021 [38] | Convolutional neural network | T-BPPV | 8000 | 8:2 Train–Test Split | 85.7 | 78.9 | - | 81.0 |
Year | ML Algorithm | Target | Sample Size | Evaluation | Performance | |||
---|---|---|---|---|---|---|---|---|
Acc. | Sens. | Spec. | F1 | |||||
2006 [69] | Artificial neural network | PV vs. CA vs. VNE | 60 | 60 validation cases | - | 93 | 93 | - |
2015 [26] | Artificial neural network | PPV vs. CA vs. PSP vs. BV | 150 | 10-fold CV | - | 90.6 | 96.1 | - |
Support vector machine | - | 93 | 97 | - | ||||
K-nearest neighbor | - | 73.3 | 92.3 | - | ||||
Naïve Bayes | - | 77 | 93.8 | - | ||||
2017 [22] | Support vector machine | Vestibular system disorders vs. healthy | 18 | 5-fold CV | 75 | - | - | - |
Support vector machine with Gaussian kernel | 81.3 | - | - | - | ||||
Decision tree | 62.5 | - | - | - | ||||
2019 [27] | K-nearest neighbor | OT vs. PPV vs. CA vs. DN vs. AVS. vs. PNP | 293 | 50-fold CV | 64.5 | - | - | - |
Extra forest | 80.7 | - | - | - | ||||
Stacked classifier | 82.7 | - | - | - | ||||
2020 [28] | Support vector machine–polynomial | Vestibular system disorders vs. healthy | 37 | - | 81.0 | - | - | - |
Support vector machine–Gaussian | 89.2 | - | - | - | ||||
2020 [70] | gradient boosting classifier | Vestibular dysfunction vs. healthy | 238 | 5- fold CV | - | 82 | - | - |
Logistic regression | - | 78 | - | - | ||||
Random forest | - | 81 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kabade, V.; Hooda, R.; Raj, C.; Awan, Z.; Young, A.S.; Welgampola, M.S.; Prasad, M. Machine Learning Techniques for Differential Diagnosis of Vertigo and Dizziness: A Review. Sensors 2021, 21, 7565. https://doi.org/10.3390/s21227565
Kabade V, Hooda R, Raj C, Awan Z, Young AS, Welgampola MS, Prasad M. Machine Learning Techniques for Differential Diagnosis of Vertigo and Dizziness: A Review. Sensors. 2021; 21(22):7565. https://doi.org/10.3390/s21227565
Chicago/Turabian StyleKabade, Varad, Ritika Hooda, Chahat Raj, Zainab Awan, Allison S. Young, Miriam S. Welgampola, and Mukesh Prasad. 2021. "Machine Learning Techniques for Differential Diagnosis of Vertigo and Dizziness: A Review" Sensors 21, no. 22: 7565. https://doi.org/10.3390/s21227565