Zernike Moment Based Classification of Cosmic Ray Candidate Hits from CMOS Sensors
Abstract
:1. Introduction
2. Classification of Candidate Hits: Strategy Overview
2.1. Overall Problem Formulation
- Step 1.
- Data augmentation (Section 3.1),
- Step 2.
- Data preprocessing (Section 3.2),
- Step 3.
2.2. Annotated Dataset
2.3. Classification Methods
- DTC – The decision tree classifier with the parameter tested for values: and , and the parameter tested for values: and .
- GNB – The Gaussian Naive Bayes (GaussianNB) based classifier with no parameters to be optimized.
- kNN – k nearest neighbors classifier with the tested in range from 1 to 10 and distance parameter for values from set: {, , and }.
- LDA – The Linear Discriminant Analysis based classifier with the parameter tested for values: {, , }, and the parameter tested for values: and .
- LRC – The Logistic Regression (aka logit, MaxEnt) based classifier with the parameter tested for values from {, , , , the equal to , and the parameter tested for values from set: {newton-cg, lbfgs, liblinear, sag, saga}.
- LSV – The Linear Support Vector Classification - SVM based classifier with the C parameter tested in range from 10 to 50, the equal to , and the parameter equal to 1 or as inversely proportional to class frequencies.
- MLP – The Multi-layer Perceptron based classifier with parameter tested for values from set {, , , }, the parameter tested for values from set: {, , }, the equal to , and the number of hidden layers equal to 2 or 3 with the tested in range from 100 to 200 with step 20.
- NSV – The -Support Vector Classification based classifier with the radial basis function kernel - RBF, the parameter tested in range from to with step and the parameter tested in range from to with step equal to .
- QDA – The Quadratic Discriminant Analysis based classifier with the parameter to regularize the per-class covariance estimates tested in range from to with step .
- SGD – The Linear SVM based classifier with SGD training was tested with parameter from set: {, , , , , , , , }, the parameter equal to , parameter values tested from to with step , and the equal to .
- SVC – The C-Support Vector Classifier with radial basis function - RBF as a kernel, the C regularization parameter tested in the range from 500 to 1000 with step 20, and parameter for the RBF kernel tested for values in the range from to with step .
- ETC—An extra-trees classifier is the meta estimator for decision trees with the parameter tested in a range from 10 to 100 with step equal to 10, the parameter set either to or values, the tested in range from 1 to 10 with step 1 and the parameter set to or .
- GBC—The Gradient Boosting for classification with the parameter tested in the range from 10 to 90 with step equal to 20, the of the individual regression estimators in range from 1 to 10 with step equal to 2, the parameter in range from to with step equal to .
- RFC—A random forest classifier, a meta estimator for decision trees with the same parameters tested as for the extra-trees classifier described above.
- BAG—A Bagging classifier that fits base classifier on random subsets to further aggregate their joint predictions was tested for the parameter in the range from to with step , and the set to 100.
- OVO—The classifier that implements one-vs.-one multiclass strategy with no parameters being optimized.
- OVR—The classifier that implements the one-vs.-rest multiclass strategy with no parameters being optimized.
- VOT—The hard voting based classifier with determining the impact of individual classifiers on the final class assignment.
2.4. Zernike Moments as Feature Carriers
2.5. Efficiency of Zernike Moment Based Features
3. Classifier Input Representation
3.1. Data Augmentation
3.2. Data Preprocessing
3.3. Feature Extraction
4. Two-Phase Model Evaluation Scheme
4.1. Phase One—Hyperparameter Optimization
4.2. Phase Two—Model Statistical Robustness
5. Experiment Results
5.1. Basic Classifiers
5.2. Ensemble Classifiers
5.3. Classifier Benchmarking
- accuracy significantly higher than value indicates overfitting (e.g., KNN and LDA).
- accuracy significantly lower than value suggests that the classifier parameters were specific to the optimization set (this problem is marginally observable for NSV).
- High value would suggests that the given classifier is unstable. We do not see such cases in our results, therefore we conclude that all classifiers’ class assignments are fairly robust.
5.4. Ensemble Classifiers vs. CNNs
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shea, M.A.; Smart, D.F. Cosmic Ray Implications for Human Health. In Cosmic Rays and Earth; Bieber, J.W., Eroshenko, E., Evenson, P., Flückiger, E.O., Kallenbach, R., Eds.; Springer: Dordrecht, The Netherlands, 2000; pp. 187–205. [Google Scholar]
- Kim, J.; Lee, J.; Han, J.; Meyyappan, M. Caution: Abnormal Variability Due to Terrestrial Cosmic Rays in Scaled-Down FinFETs. IEEE Trans. Electron. Dev. 2019, 66, 1887–1891. [Google Scholar] [CrossRef]
- Höeffgen, S.K.; Metzger, S.; Steffens, M. Investigating the Effects of Cosmic Rays on Space Electronics. Front. Phys. 2020, 8, 318. [Google Scholar] [CrossRef]
- Foppiano, A.J.; Ovalle, E.M.; Bataille, K.; Stepanova, M. Ionospheric evidence of the May 1960 earthquake Concepción? Geofísica Int. 2008, 47, 179–183. [Google Scholar] [CrossRef]
- Romanova, N.V.; Pilipenko, V.A.; Stepanova, M.V. On the magnetic precursor of the Chilean Earthquake of 27 February 2010. Geomagn. Aeron. 2015, 55, 219–222. [Google Scholar] [CrossRef]
- He, L.; Heki, K. Three-Dimensional Tomography of Ionospheric Anomalies Immediately Before the 2015 Illapel Earthquake, Central Chile. J. Geophys. Res. 2018, 123, 4015–4025. [Google Scholar] [CrossRef] [Green Version]
- Whiteson, D.; Mulhearn, M.; Shimmin, C.; Cranmer, K.; Brodie, K.; Burns, D. Searching for ultra-high energy cosmic rays with smartphones. Astropart. Phys. 2016, 79, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Vandenbroucke, J.; Bravo, S.; Karn, P.; Meehan, M.; Peacock, J.; Plewa, M.; Ruggles, T.; Schultz, D.; Simons, A. Detecting particles with cell phones: The Distributed Electronic Cosmic-ray Observatory. arXiv 2015, arXiv:1510.07665. [Google Scholar]
- Homola, P.; Beznosko, D.; Bhatta, G.; Bibrzycki, Ł.; Borczyńska, M.; Bratek, Ł.; Budnev, N.; Burakowski, D.; Alvarez-Castillo, D.E.; Almeida Cheminant, K.; et al. Cosmic-Ray Extremely Distributed Observatory. Symmetry 2020, 12, 1835. [Google Scholar] [CrossRef]
- Bibrzycki, Ł.; Burakowski, D.; Homola, P.; Piekarczyk, M.; Niedźwiecki, M.; Rzecki, K.; Stuglik, S.; Tursunov, A.; Hnatyk, B.; Castillo, D.E.A.; et al. Towards A Global Cosmic Ray Sensor Network: CREDO Detector as the First Open-Source Mobile Application Enabling Detection of Penetrating Radiation. Symmetry 2020, 12, 1802. [Google Scholar] [CrossRef]
- Borisyak, M.; Usvyatsov, M.; Mulhearn, M.; Shimmin, C.; Ustyuzhanin, A. Muon Trigger for Mobile Phones. J. Phys. Conf. Ser. 2017, 898, 032048. [Google Scholar] [CrossRef]
- Piekarczyk, M.; Bar, O.; Bibrzycki, Ł.; Niedźwiecki, M.; Rzecki, K.; Stuglik, S.; Andersen, T.; Budnev, N.M.; Alvarez-Castillo, D.E.; Almeida Cheminant, K.; et al. CNN-Based Classifier as an Offline Trigger for the CREDO Experiment. Sensors 2021, 21, 4804. [Google Scholar] [CrossRef] [PubMed]
- Winter, M.; Bourbeau, J.; Bravo, S.; Campos, F.; Meehan, M.; Peacock, J.; Ruggles, T.; Schneider, C.; Simons, A.; Vandenbroucke, J. Particle identification in camera image sensors using computer vision. Astropart. Phys. 2019, 104, 42–53. [Google Scholar] [CrossRef] [Green Version]
- Teague, M.R. Image analysis via the general theory of moments*. J. Opt. Soc. Am. 1980, 70, 920–930. [Google Scholar] [CrossRef]
- Teh, C.; Chin, R.T. On image analysis by the methods of moments. IEEE Trans. Pattern Anal. Mach. Intell. 1988, 10, 496–513. [Google Scholar] [CrossRef]
- Khotanzad, A.; Hong, Y.H. Invariant image recognition by Zernike moments. IEEE Trans. Pattern Anal. Mach. Intell. 1990, 12, 489–497. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Yang, Y.; Zhu, X.; Gui, Z.; Shu, H. General Form for Obtaining Unit Disc-Based Generalized Orthogonal Moments. IEEE Trans. Image Process. 2014, 23, 5455–5469. [Google Scholar] [CrossRef]
- Murphy, K.P. Machine Learning: A Probabilistic Perspective. In Adaptive Computation and Machine Learning, 1st ed.; The MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Rutkowski, L. Computational Intelligence: Methods and Techniques, 1st ed.; Springer: Berlin, Germany, 2008. [Google Scholar]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning: With Applications in R; Springer: Berlin, Germany, 2014. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Friedman, J.H. (y X)-values, O.K. Stochastic Gradient Boosting. Comput. Stat. Data Anal. 1999, 38, 367–378. [Google Scholar] [CrossRef]
- Breiman, L. Bagging Predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Groom, D. Cosmic Rays and Other Nonsense in Astronomical CCD Imagers. In Scientific Detectors for Astronomy; Amico, P., Beletic, J.W., Beletic, J.E., Eds.; Springer: Dordrecht, The Netherlands, 2004; pp. 81–94. [Google Scholar]
- Groom, D. Cosmic rays and other nonsense in astronomical CCD imagers. Exp. Astron. 2002, 14, 45–55. [Google Scholar] [CrossRef]
- Szumlak, T. Silicon detectors for the LHC Phase-II upgrade and beyond RD50 Status report. Nucl. Instrument. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2020, 958, 162187. [Google Scholar] [CrossRef]
- Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E.J.; Al Samarai, I.; Albert, J.N. (The Pierre Auger Collaboration) The Pierre Auger Cosmic Ray Observatory. Nucl. Instrument. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2015, 798, 172–213. [Google Scholar] [CrossRef]
- Ahlers, M.; Halzen, F. Opening a new window onto the universe with IceCube. Prog. Part. Nucl. Phys. 2018, 102, 73–88. [Google Scholar] [CrossRef] [Green Version]
- Ruat, M.; d’Aillon, E.G.; Verger, L. 3D semiconductor radiation detectors for medical imaging: Simulation and design. In Proceedings of the 2008 IEEE Nuclear Science Symposium Conference Record, Dresden, Germany, 19–25 October 2008; pp. 434–439. [Google Scholar] [CrossRef]
- Kumar, R. Tracking Cosmic Rays by CRAYFIS (Cosmic Rays Found in Smartphones) Global Detector. In Proceedings of the 34th International Cosmic Ray Conference — PoS(ICRC2015), The Hague, The Netherlands, 30 July–6 August 2016; Volume 236, p. 1234. [Google Scholar] [CrossRef] [Green Version]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Hachaj, T.; Bibrzycki, Ł; Piekarczyk, M. Recognition of Cosmic Ray Images Obtained from CMOS Sensors Used in Mobile Phones by Approximation of Uncertain Class Assignment with Deep Convolutional Neural Network. Sensors 2021, 21, 1963. [Google Scholar] [CrossRef]
- Coelho, L.P. Mahotas: Open source software for scriptable computer vision. J. Open Res. Softw. 2013, 1, e3. [Google Scholar] [CrossRef]
- Xin, Y.; Pawlak, M.; Liao, S. Accurate Computation of Zernike Moments in Polar Coordinates. IEEE Trans. Image Process. 2007, 16, 581–587. [Google Scholar] [CrossRef]
- Wiliem, A.; Madasu, V.; Boles, W.; Yarlagadda, P. A Face Recognition Approach using Zernike Moments for Video Surveillance. In Proceedings of the 2007 Recent Advances in Security Technology: RNSA Security Technology Conference Australia, Melbourne, Australia, 28 September 2007; pp. 341–355. [Google Scholar]
- Lajevardi, S.M.; Hussain, Z.M. Higher order orthogonal moments for invariant facial expression recognition. Digit. Signal Process. 2010, 20, 1771–1779. [Google Scholar] [CrossRef]
- Niedźwiecki, M.; Rzecki, K.; Marek, M.; Homola, P.; Smelcerz, K.; Castillo, D.; Smolek, K.; Hnatyk, B.; Zamora-Saa, J.; Mozgova, A.; et al. Recognition and classification of the cosmic-ray events in images captured by CMOS/CCD cameras. PLoS ONE 2019, 358. [Google Scholar]
User base | |
Device base | |
Operation time | days (~1050 years) |
Candidate detections |
Spots | Tracks | Worms | Artefacts | |
---|---|---|---|---|
# | 535 | 393 | 304 | 1150 |
% | 22.5 | 16.5 | 12.8 | 48.2 |
Spots | Tracks | Worms | Artefacts | Total | |
---|---|---|---|---|---|
Data set | 535 | 393 | 304 | 1150 | 2382 |
Test set | 107 | 79 | 61 | 230 | 477 |
Optimization set | 428 | 314 | 243 | 920 | 1905 |
Augmented opt. set | 428 | 2198 | 3159 | 920 | 6705 |
Augmented training set | 342 | 1758 | 2527 | 736 | 5363 |
Augmented validation set | 86 | 440 | 632 | 184 | 1342 |
Spots | Tracks | Worms | Artefacts | Total | |
---|---|---|---|---|---|
Data set | 535 | 393 | 304 | 1150 | 2382 |
Test set | 107 | 79 | 61 | 230 | 477 |
Training set | 428 | 314 | 243 | 920 | 1905 |
Augmented training set | 428 | 2198 | 3159 | 920 | 6705 |
1st Phase | 2nd Phase | |||||
---|---|---|---|---|---|---|
Classifier | CV | Test | Scaling | Hyperparameters | Mean30 | Std30 |
DTC | 0.8037 | 0.7966 | z-score | {’criterion’: ’entropy’, ’splitter’: ’random’} | 0.8194 | 0.0183 |
GNB | 0.4764 | 0.7191 | z-score | no parameters were optimized | 0.7017 | 0.0216 |
KNN | 0.8415 | 0.7883 | z-score | {’metric’: ’chebyshev’, ’n_neighbors’: 1} | 0.7808 | 0.0188 |
LDA | 0.6534 | 0.5723 | z-score | {’shrinkage’: None, ’solver’: ’lsqr’} | 0.5538 | 0.0240 |
LRC | 0.8847 | 0.8470 | z-score | {’penalty’: ’none’, ’solver’: ’newton-cg’} | 0.8292 | 0.0178 |
LSV | 0.8449 | 0.8050 | z-score | {’C’: 10, ’class_weight’: None} | 0.7843 | 0.0222 |
MLP | 0.9154 | 0.8784 | z-score | {’activation’: ’relu’, ’hidden’: (180, 120), ’solver’: ’adam’} | 0.8799 | 0.0134 |
NSV | 0.9016 | 0.9015 | z-score | {’gamma’: 0.1, ’kernel’: ’rbf’, ’nu’: 0.05} | 0.8711 | 0.0136 |
QDA | 0.6999 | 0.7631 | z-score | {’reg_param’: 0.0001} | 0.7422 | 0.0209 |
SGD | 0.8683 | 0.8008 | z-score | {’alpha’: 9e-05, ’loss’: ’log’, ’penalty’: ’l1’} | 0.8027 | 0.0202 |
SVC | 0.9177 | 0.8952 | z-score | {’C’: 700, ’gamma’: 0.08, ’kernel’: ’rbf’} | 0.8818 | 0.0124 |
1st Phase | 2nd Phase | |||||
---|---|---|---|---|---|---|
Classifier | CV | Test | Scaling | Hyperparameters | Mean30 | Std30 |
ETC | 0.8986 | 0.8973 | norm | {’bootstrap’: False, ’max_features’: None, ’criterion’: ’gini’, ’n_estimators’: 70} | 0.8758 | 0.0142 |
GBC | 0.8950 | 0.8847 | norm | {’learning_rate’: 0.7, ’n_estimators’: 90 ’max_depth’: 9} | 0.8741 | 0.0150 |
RFC | 0.8853 | 0.8763 | norm | {’bootstrap’: False, ’criterion’: ’entropy’, ’max_features’: 5, ’n_estimators’: 40} | 0.8699 | 0.0137 |
VOT | 0.9205 | 0.8973 | z-score | {’weights’: (4, 8, 8)} | 0.8841 | 0.0123 |
BAG/SVC | 0.9078 | 0.8868 | z-score | {’max_samples’: 0.7, ’n_estimators’: 100} | 0.8805 | 0.0135 |
OvO/MLP | 0.9101 | 0.8973 | z-score | no parameters were optimized | 0.8880 | 0.0145 |
OvO/SVC | 0.9171 | 0.8889 | z-score | no parameters were optimized | 0.8850 | 0.0148 |
OvR/MLP | 0.9138 | 0.8952 | z-score | no parameters were optimized | 0.8853 | 0.0139 |
Class | Hachaj et al. | Winter et al. | This Paper |
---|---|---|---|
Spots | 98.71% | 98.9% | 98.13% |
Tracks | 88.89% | 95.4% | 93.67% |
Worms | 89.65% | 92.9% | 88.52% |
Artefacts | 97.70% | 98.2% | 91.96% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bar, O.; Bibrzycki, Ł.; Niedźwiecki, M.; Piekarczyk, M.; Rzecki, K.; Sośnicki, T.; Stuglik, S.; Frontczak, M.; Homola, P.; Alvarez-Castillo, D.E.; et al. Zernike Moment Based Classification of Cosmic Ray Candidate Hits from CMOS Sensors. Sensors 2021, 21, 7718. https://doi.org/10.3390/s21227718
Bar O, Bibrzycki Ł, Niedźwiecki M, Piekarczyk M, Rzecki K, Sośnicki T, Stuglik S, Frontczak M, Homola P, Alvarez-Castillo DE, et al. Zernike Moment Based Classification of Cosmic Ray Candidate Hits from CMOS Sensors. Sensors. 2021; 21(22):7718. https://doi.org/10.3390/s21227718
Chicago/Turabian StyleBar, Olaf, Łukasz Bibrzycki, Michał Niedźwiecki, Marcin Piekarczyk, Krzysztof Rzecki, Tomasz Sośnicki, Sławomir Stuglik, Michał Frontczak, Piotr Homola, David E. Alvarez-Castillo, and et al. 2021. "Zernike Moment Based Classification of Cosmic Ray Candidate Hits from CMOS Sensors" Sensors 21, no. 22: 7718. https://doi.org/10.3390/s21227718