Predicting Deep Body Temperature (Tb) from Forehead Skin Temperature: Tb or Not Tb?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Protocol
2.3. Measurements
2.4. Analyses
3. Results
3.1. Relationship between Tsk and Tgi
3.2. Tsk and Tgi at Different Ambient Temperatures (HW vs. Non-HW)
3.3. Proximal-Distal Temperature Gradient Prediction
4. Discussion
4.1. Prediction of Tb Using Measurements of Tforehead and ∆Tforehead–fingertip
4.2. Effect of Ambient Temperature on the Relation between Tsk and Tb
4.3. Accuracy of IRT to Contact Thermography
4.4. Prediction of Deep Body Temperature
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gunga, H.-C.; Sandsund, M.; Reinertsen, R.E.; Sattler, F.; Koch, J. A non-invasive device to continuously determine heat strain in humans. J. Therm. Biol. 2008, 33, 297–307. [Google Scholar] [CrossRef]
- Mekjavic, I.B.; Tipton, M.J. Myths and methodologies: Degrees of freedom—Limitations of infrared thermographic screening for Covid-19 and other infections. Exp. Physiol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Pogačar, T.; Casanueva, A.; Kozjek, K.; Ciuha, U.; Mekjavić, I.B.; Bogataj, L.K.; Črepinšek, Z. The effect of hot days on occupational heat stress in the manufacturing industry: Implications for workers’ well-being and productivity. Int. J. Biometeorol. 2018, 62, 1251–1264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kjellstrom, T.; Kovats, R.S.; Lloyd, S.J.; Holt, T.; Tol, R.S. The direct impact of climate change on regional labor productivity. Arch. Environ. Occup. Health 2009, 64, 217–227. [Google Scholar] [CrossRef]
- Ciuha, U.; Pogačar, T.; Bogataj, L.K.; Gliha, M.; Nybo, L.; Flouris, A.D.; Mekjavic, I.B. Interaction between indoor occupational heat stress and environmental temperature elevations during heat waves. Weather. Clim. Soc. 2019, 11, 755–762. [Google Scholar] [CrossRef] [Green Version]
- Flouris, A.D.; Dinas, P.C.; Ioannou, L.G.; Nybo, L.; Havenith, G.; Kenny, G.P.; Kjellstrom, T. Workers’ health and productivity under occupational heat strain: A systematic review and meta-analysis. Lancet Planet. Health 2018, 2, e521–e531. [Google Scholar] [CrossRef] [Green Version]
- Ioannou, L.G.; Mantzios, K.; Tsoutsoubi, L.; Nintou, E.; Vliora, M.; Gkiata, P.; Dallas, C.N.; Gkikas, G.; Agaliotis, G.; Sfakianakis, K. Occupational heat stress: Multi-country observations and interventions. Int. J. Environ. Res. Public Health 2021, 18, 6303. [Google Scholar] [CrossRef]
- Ioannou, L.G.; Mantzios, K.; Tsoutsoubi, L.; Panagiotaki, Z.; Kapnia, A.K.; Ciuha, U.; Nybo, L.; Flouris, A.D.; Mekjavic, I.B. Effect of a simulated heat wave on physiological strain and labour productivity. Int. J. Environ. Res. Public Health 2021, 18, 3011. [Google Scholar] [CrossRef]
- Ioannou, L.G.; Tsoutsoubi, L.; Samoutis, G.; Bogataj, L.K.; Kenny, G.P.; Nybo, L.; Kjellstrom, T.; Flouris, A.D. Time-motion analysis as a novel approach for evaluating the impact of environmental heat exposure on labor loss in agriculture workers. Temperature 2017, 4, 330–340. [Google Scholar] [CrossRef]
- Bongers, C.C.; Daanen, H.A.; Bogerd, C.P.; Hopman, M.T.; Eijsvogels, T.M. Validity, Reliability, and Inertia of Four Different Temperature Capsule Systems. Med. Sci. Sports Exerc. 2017, 50, 169–175. [Google Scholar] [CrossRef]
- Travers, G.J.; Nichols, D.S.; Farooq, A.; Racinais, S.; Périard, J.D. Validation of an ingestible temperature data logging and telemetry system during exercise in the heat. Temperature 2016, 3, 208–219. [Google Scholar] [CrossRef] [PubMed]
- van Marken Lichtenbelt, W.D.; Daanen, H.A.; Wouters, L.; Fronczek, R.; Raymann, R.J.; Severens, N.M.; Van Someren, E.J. Evaluation of wireless determination of skin temperature using iButtons. Physiol. Behav. 2006, 88, 489–497. [Google Scholar] [CrossRef]
- Rubinstein, E.H.; Sessler, D.I. Skin-surface temperature gradients correlate with fingertip blood flow in humans. Anesthesiology 1990, 73, 541–545. [Google Scholar] [CrossRef] [PubMed]
- House, J.R.; Tipton, M.J. Using skin temperature gradients or skin heat flux measurements to determine thresholds of vasoconstriction and vasodilatation. Eur. J. Appl. Physiol. 2002, 88, 141–145. [Google Scholar] [CrossRef]
- Keramidas, M.E.; Geladas, N.D.; Mekjavic, I.B.; Kounalakis, S.N. Forearm–finger skin temperature gradient as an index of cutaneous perfusion during steady-state exercise. Clin. Physiol. Funct. Imaging 2013, 33, 400–404. [Google Scholar] [CrossRef]
- Holm, J.K.; Kellett, J.G.; Jensen, N.H.; Hansen, S.N.; Jensen, K.; Brabrand, M. Prognostic value of infrared thermography in an emergency department. Eur. J. Emerg. Med. 2018, 25, 204–208. [Google Scholar] [CrossRef]
- Barnston, A.G. Correspondence among the correlation, RMSE, and Heidke forecast verification measures; refinement of the Heidke score. Weather. Forecast. 1992, 7, 699–709. [Google Scholar] [CrossRef] [Green Version]
- Maley, M.J.; Hunt, A.P.; Bach, A.J.; Eglin, C.M.; Costello, J.T. Infrared cameras overestimate skin temperature during rewarming from cold exposure. J. Therm. Biol. 2020, 91, 102614. [Google Scholar] [CrossRef] [PubMed]
- Havenith, G.; Lloyd, A.B. Counterpoint to “Infrared cameras overestimate skin temperature during rewarming from cold exposure”. J. Therm. Biol. 2020, 92, 102663. [Google Scholar] [CrossRef]
- Ng, D.K.-k.; Chan, C.-h.; Chan, E.Y.-t.; Kwok, K.-l.; Chow, P.-y.; Lau, W.-F.; Ho, J.C.-S. A brief report on the normal range of forehead temperature as determined by noncontact, handheld, infrared thermometer. Am. J. Infect. Control 2005, 33, 227–229. [Google Scholar] [CrossRef]
- van den Heuvel, C.J.; Ferguson, S.A.; Dawson, D.; Gilbert, S.S. Comparison of digital infrared thermal imaging (DITI) with contact thermometry: Pilot data from a sleep research laboratory. Physiol. Meas. 2003, 24, 717. [Google Scholar] [CrossRef] [PubMed]
- de Andrade Fernandes, A.; dos Santos Amorim, P.R.; Brito, C.J.; de Moura, A.G.; Moreira, D.G.; Costa, C.M.A.; Sillero-Quintana, M.; Marins, J.C.B. Measuring skin temperature before, during and after exercise: A comparison of thermocouples and infrared thermography. Physiol. Meas. 2014, 35, 189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, C.; Richardson, A.; Watt, P.; Maxwell, N. Reliability and validity of skin temperature measurement by telemetry thermistors and a thermal camera during exercise in the heat. J. Therm. Biol. 2014, 45, 141–149. [Google Scholar] [CrossRef] [Green Version]
- Foster, J.; Lloyd, A.B.; Havenith, G. Non-contact infrared assessment of human body temperature: The journal Temperature toolbox. Temperature 2021, 8, 306–319. [Google Scholar] [CrossRef] [PubMed]
Work (0840–1800 hrs) | Rest/Sleep (1800–0840 hrs) | |
---|---|---|
Temperature (°C) | Temperature (°C) | |
Pre-HW | 25.4 (0.3) | 22.3 (0.5) |
HW | 35.5 (0.3) | 26.3 (0.8) |
Post-HW | 25.5 (0.7) | 23.1 (0.7) |
Ambient Condition | Measurement | Mean (SD) | CoV (%) |
---|---|---|---|
22 °C | Tgi | 36.7 (0.4) | 1.2 |
Tforehead | 34.2 (1.4) | 4.1 | |
Tfinger | 33.2 (0.5) | 1.5 | |
25 °C | Tgi | 37.0 (0.4) | 1.0 |
Tforehead | 33.9 (1.3) | 3.7 | |
Tfinger | 33.8 (0.5) | 1.4 | |
35 °C | Tgi | 37.3 ± 0.2 | 0.6 |
Tforehead | 35.9 ± 0.7 | 1.9 | |
Tfinger | 35.5 ± 0.6 | 1.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fisher, J.T.; Ciuha, U.; Tipton, M.J.; Ioannou, L.G.; Mekjavic, I.B. Predicting Deep Body Temperature (Tb) from Forehead Skin Temperature: Tb or Not Tb? Sensors 2022, 22, 826. https://doi.org/10.3390/s22030826
Fisher JT, Ciuha U, Tipton MJ, Ioannou LG, Mekjavic IB. Predicting Deep Body Temperature (Tb) from Forehead Skin Temperature: Tb or Not Tb? Sensors. 2022; 22(3):826. https://doi.org/10.3390/s22030826
Chicago/Turabian StyleFisher, Jason T., Urša Ciuha, Michael J. Tipton, Leonidas G. Ioannou, and Igor B. Mekjavic. 2022. "Predicting Deep Body Temperature (Tb) from Forehead Skin Temperature: Tb or Not Tb?" Sensors 22, no. 3: 826. https://doi.org/10.3390/s22030826