Simultaneous Electrochemical Sensing of Indole-3-Acetic Acid and Salicylic Acid on Poly(L-Proline) Nanoparticles–Carbon Dots–Multiwalled Carbon Nanotubes Composite-Modified Electrode
Abstract
:1. Introduction
2. Experimental Section
2.1. Reagents and Apparatus
2.2. Procedures
3. Results and Discussion
3.1. Characterization of the PPRONPs–CDs–MWCNTs Composite
3.2. Kinetic Behavior of IAA and SA Detection
3.3. Detection of IAA and SA
3.4. The Selectivity, Reproducibility, and Stability of PPRONPs–CDs–MWCNTs/GCE
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bari, R.; Jones, J.D.G. Role of plant hormones in plant defence responses. Plant Mol. Biol. 2009, 69, 473–488. [Google Scholar] [CrossRef]
- Shigenaga, A.M.; Argueso, C.T. No hormone to rule them all: Interactions of plant hormones during the responses of plants to pathogens. Semin. Cell Dev. Biol. 2016, 56, 174–189. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-G.; Park, D.-W.; Kang, G.-R.; Kim, T.-S.; Yang, Y.; Moon, S.-J.; Choi, E.-A.; Ha, D.-R.; Kim, E.-S.; Cho, B.-S. Simultaneous determination of plant growth regulator and pesticides in bean sprouts by liquid chromatography–tandem mass spectrometry. Food Chem. 2016, 208, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Li, Q.; Liu, J.; Jin, Y.; Qian, Q.; Jiang, K.; Fan, S. Fabrication of All-Carbon Nanotube Electronic Devices on Flexible Substrates Through CVD and Transfer Methods. Adv. Mater. 2013, 25, 6050–6056. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Zhu, X.; Wu, T.; Zhao, M.; Liu, H. Rapid and sensitive detection of auxins and flavonoids in plant samples by high-performance liquid chromatography coupled with tandem mass spectrometry. J. Sep. Sci. 2012, 35, 2559–2566. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wu, X.; Li, Y.; Yang, Y.; Yang, D.; Yin, S.; Liu, L.; Sun, C. Simultaneous Determination of Seven Plant Growth Regulators in Melons and Fruits by Modified QuEChERS Coupled with Capillary Electrophoresis. Food Anal. Methods 2018, 11, 2788–2798. [Google Scholar] [CrossRef]
- Liu, X.; Wan, Y. Simultaneous determination of 2-naphthoxyacetic acid and indole-3-acetic acid by first derivation synchronous fluorescence spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 111, 230–236. [Google Scholar] [CrossRef]
- Su, Z.; Tang, D.; Liu, J.; Yang, X.; Xu, S.; Xu, W.; Zhou, Y.; Xu, M.; Yi, J.; Jiang, H.; et al. Electrochemically-assisted deposition of toluidine blue-functionalized metal-organic framework films for electrochemical immunosensing of Indole-3-acetic acid. J. Electroanal. Chem. 2021, 880, 114855. [Google Scholar] [CrossRef]
- Su, Z.; Xu, X.; Cheng, Y.; Tan, Y.; Xiao, L.; Tang, D.; Jiang, H.; Qin, X.; Wang, H. Chemical pre-reduction and electro-reduction guided preparation of a porous graphene bionanocomposite for indole-3-acetic acid detection. Nanoscale 2019, 11, 962–967. [Google Scholar] [CrossRef]
- Mkwae, P.S.; Ogundipe, S.A.; Jozela, M.; Revaprasadu, N.; Nkosi, S.S. The heat rate kinetics on the liquefied hydrocarbon gases sensing and food quality control detecting strategy. Mater. Chem. Phys. 2021, 277, 125550. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, J.; Dong, T.; Xu, Y.; Shang, Y. Application of electrochemical methods for the detection of abiotic stress biomarkers in plants. Biosens. Bioelectron. 2021, 182, 113105. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Liu, X.; Gao, L.; Lu, Y.; Li, Y.; Pan, Z.; Bao, N.; Gu, H. Simultaneous Electrochemical Determination of Indole-3-acetic Acid and Salicylic Acid in Pea Roots using a Multiwalled Carbon Nanotube Modified Electrode. Anal. Lett. 2015, 48, 1578–1592. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, X.; Wang, C.; Hou, P.; Dong, H.; Luo, B.; Li, A. A multifunctional ratiometric electrochemical sensor for combined determination of indole-3-acetic acid and salicylic acid. RSC Adv. 2020, 10, 3115–3121. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.-J.; Zhou, J.-J.; Pan, J.-L.; Liang, Y.-Y.; Fang, Z.-J.; Xie, Y.; Yang, H.; Gu, H.-Y.; Bao, N. Electrochemical mapping of indole-3-acetic acid and salicylic acid in whole pea seedlings under normal conditions and salinity. Sens. Actuators B Chem. 2018, 276, 545–551. [Google Scholar] [CrossRef]
- Cao, X.; Zhu, X.; He, S.; Xu, X.; Ye, Y.; Gunasekaran, S. Gold nanoparticle-doped three-dimensional reduced graphene hydrogel modified electrodes for amperometric determination of indole-3-acetic acid and salicylic acid. Nanoscale 2019, 11, 10247–10256. [Google Scholar] [CrossRef]
- Cao, X.; Zhu, X.; He, S.; Xu, X.; Ye, Y. Electro-Oxidation and Simultaneous Determination of Indole-3-Acetic Acid and Salicylic Acid on Graphene Hydrogel Modified Electrode. Sensors 2019, 19, 5483. [Google Scholar] [CrossRef] [Green Version]
- Huo, X.L.; Zhu, C.C.; Jiang, H.; Yuan, Q.; Wang, J.J.; Wang, J.Y.; Pan, Z.Q.; Chen, C.L.; Wu, Z.Q.; Bao, N. Rapid profiling of IAA and SA in tomato fruit during ripening using low-cost paper-based electroanalytical devices. Postharvest Biol. Technol. 2021, 180, 11635–11642. [Google Scholar] [CrossRef]
- Cui, L.; Ren, X.; Wang, J.; Sun, M. Synthesis of homogeneous carbon quantum dots by ultrafast dual-beam pulsed laser ablation for bioimaging. Mater. Today Nano 2020, 12, 100091. [Google Scholar] [CrossRef]
- Chung, S.; Revia, R.A.; Zhang, M. Graphene Quantum Dots and Their Applications in Bioimaging, Biosensing, and Therapy. Adv. Mater. 2019, 33, e1904362. [Google Scholar] [CrossRef]
- Boakye-Yiadom, K.O.; Kesse, S.; Opoku-Damoah, Y.; Filli, M.S.; Aquib; Joelle, M.M.B.; Farooq, M.A.; Mavlyanova, R.; Raza, F.; Bavi, R.; et al. Carbon dots: Applications in bioimaging and theranostics. Int. J. Pharm. 2019, 564, 308–317. [Google Scholar] [CrossRef]
- Jiang, F.; Zhang, J.J.; Zhang, J.R.; Zhu, J.J. Ultrasensitive immunoassay based on dual signal amplification of the electrically heated carbon electrode and quantum dots functionalized labels for the detection of matrix metalloproteinase-9. Analyst 2013, 138, 1962–1965. [Google Scholar] [CrossRef] [PubMed]
- Elugoke, S.; Adekunle, A.; Fayemi, O.; Mamba, B.; Sherif, E.-S.; Ebenso, E. Carbon-Based Quantum Dots for Electrochemical Detection of Monoamine Neurotransmitters—Review. Biosensors 2020, 10, 162. [Google Scholar] [CrossRef] [PubMed]
- Preiss, L.C.; Werber, L.; Fischer, V.; Hanif, S.; Landfester, K.; Mastai, Y.; Muñoz-Espí, R. Amino-Acid-Based Chiral Nanoparticles for Enantioselective Crystallization. Adv. Mater. 2015, 27, 2728–2732. [Google Scholar] [CrossRef]
- Iwami, H.; Okamura, M.; Kondo, M.; Masaoka, S. Electrochemical Polymerization Provides a Function-Integrated System for Water Oxidation. Angew. Chem. Int. Ed. 2021, 60, 5965–5969. [Google Scholar] [CrossRef] [PubMed]
- Kordasht, H.K.; Hasanzadeh, M.; Seidi, F.; Alizadeh, P.M. Poly (amino acids) towards sensing: Recent progress and challenges. TrAC Trends Anal. Chem. 2021, 140, 116279. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Z.; Zhao, Y. Purification and dispersibility of multi-walled carbon nanotubes in aqueous solution. Russ. J. Phys. Chem. A 2016, 90, 2619–2624. [Google Scholar] [CrossRef]
- Su, Z.; Xu, X.; Xu, H.; Zhang, Y.; Li, C.; Ma, Y.; Song, D.; Xie, Q. Amperometric thrombin aptasensor using a glassy carbon electrode modified with polyaniline and multiwalled carbon nanotubes tethered with a thiolated aptamer. Microchim. Acta 2017, 184, 1677–1682. [Google Scholar] [CrossRef]
- Liu, Y.; Fang, X.; Chen, G.; Ye, Y.; Xu, J.; Ouyang, G.; Zhu, F. Recent development in sample preparation techniques for plant hormone analysis. TrAC Trends Anal. Chem. 2019, 113, 224–233. [Google Scholar] [CrossRef]
- Mu, X.; Qi, L.; Dong, P.; Qiao, J.; Hou, J.; Nie, Z.; Ma, H. Facile one-pot synthesis of l-proline-stabilized fluorescent gold nanoclusters and its application as sensing probes for serum iron. Biosens. Bioelectron. 2013, 49, 249–255. [Google Scholar] [CrossRef]
- Shang, L.; Dörlich, R.M.; Brandholt, S.; Schneider, R.; Trouillet, V.; Bruns, M.; Gerthsen, D.; Nienhaus, G.U. Facile preparation of water-soluble fluorescent gold nanoclusters for cellular imaging applications. Nanoscale 2011, 3, 2009–2014. [Google Scholar] [CrossRef]
- Shimizu, S.; Takada, M.; Wada, K.; Ikake, H.; Muroga, Y. Conformational transition of Poly-L-proline studied by IR, NMR, and SAXS. Polymer 2021, 215, 123424. [Google Scholar] [CrossRef]
- Mallakpour, S.; Zarei, M. Preparation and characterization of novel optically active nanostructured poly(amide–imide)s-containing (l)-α-amino acid moieties and azobenzene side groups. High Perform. Polym. 2013, 25, 918–928. [Google Scholar] [CrossRef]
- Lu, S.; Bai, L.; Wen, Y.; Li, M.; Yan, D.; Zhang, R.; Chen, K. Water-dispersed carboxymethyl cellulose-montmorillonite-single walled carbon nanotube composite with enhanced sensing performance for simultaneous voltammetric determination of two trace phytohormones. J. Solid State Electrochem. 2014, 19, 2023–2037. [Google Scholar] [CrossRef]
- de Toledo, R.; Vaz, C. Use of a graphite–polyurethane composite electrode for electroanalytical determination of indole-3-acetic acid in soil samples. Microchem. J. 2007, 86, 161–165. [Google Scholar] [CrossRef]
- Gan, T.; Hu, C.; Chen, Z.; Hu, S. A disposable electrochemical sensor for the determination of indole-3-acetic acid based on poly(safranine T)-reduced graphene oxide nanocomposite. Talanta 2011, 85, 310–316. [Google Scholar] [CrossRef]
- Wu, K.; Sun, Y.; Hu, S. Development of an amperometric indole-3-acetic acid sensor based on carbon nanotubes film coated glassy carbon electrode. Sens. Actuators B Chem. 2003, 96, 658–662. [Google Scholar] [CrossRef]
- Hu, T.; Dryhurst, G. Electrochemical and peroxidase O2-mediated oxidation of indole-3-acetic acid at physiological pH. J. Electroanal. Chem. 1997, 432, 7–18. [Google Scholar] [CrossRef]
- Wang, Q.; Li, X.; Tang, L.; Fei, Y.; Pan, Y.; Sun, L. Paper-based electroanalytical devices for in situ determination of free 3-indoleacetic acid and salicylic acid in living Pyropia haitanensis thallus under various environmental stresses. J. Appl. Phycol. 2019, 32, 485–497. [Google Scholar] [CrossRef]
- Sun, L.-J.; Xie, Y.; Yan, Y.-F.; Yang, H.; Gu, H.-Y.; Bao, N. Paper-based analytical devices for direct electrochemical detection of free IAA and SA in plant samples with the weight of several milligrams. Sens. Actuators B Chem. 2017, 247, 336–342. [Google Scholar] [CrossRef]
Electrodes | Rct/Ω |
---|---|
GCE | 372.6 |
CDs/GCE | 628 |
PPRONPs–CDs/GCE | 403.6 |
MWCNTs/GCE | 123.4 |
PPRONPs–CDs–MWCNTs/GCE | 7.76 |
Electrodes * | Detection Substance | Linear Range/μM | Detection Limit/μM | Ref. |
---|---|---|---|---|
GH/GCE | IAA SA | 0.6–10, 4–200 0.6–10, 4–200 | 1.42 2.8 | [16] |
CB–MWCNT–Nafion/Fc/GCE | IAA SA | 25–1000 25–1000 | 1.99 3.3 | [13] |
MWCNTs–CS/GCE | IAA SA | 0.67–48.82 0.67–48.82 | 0.1 0.1 | [12] |
CMC–MMT–SWCNT/GCE | IAA SA | 0.005–0.3, 0.3–70 0.01–300 | 0.002 0.0063 | [33] |
AuNPs–GH/GCE | IAA SA | 0.8–4, 4–128 0.8–8.4, 8.4–188 | 0.21 0.22 | [15] |
CT | IAA SA | 1–100 1–100 | 0.1 0.1 | [14] |
CCC/ITO | IAA SA | 10–100 10–100 | 3 2 | [17] |
PADs | IAA SA | 1–60 1–60 | 0.1 0.1 | [38] |
PADs(Ag/AgCl) | IAA SA | - - | - - | [39] |
PPRONPs–CDs–MWCNTs/GCE | IAA SA | 0.05–25 0.2–40 | 0.007 0.1 | This work |
Sample | Analyte | Join (μM) | Detection (μM) | Recovery (%) | RSD (%) |
---|---|---|---|---|---|
Rape leaves | IAA SA | 10 20 | 10.2 17.69 | 102 88.45 | 1.9 0.12 |
Broad Bean leaves | IAA SA | 10 20 | 9.9 17.24 | 99 86.2 | 1.5 0.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Kuang, Y.; Fan, Z.; Qin, X.; Hu, S.; Liang, Z.; Liu, Q.; Zhang, W.; Wang, B.; Su, Z. Simultaneous Electrochemical Sensing of Indole-3-Acetic Acid and Salicylic Acid on Poly(L-Proline) Nanoparticles–Carbon Dots–Multiwalled Carbon Nanotubes Composite-Modified Electrode. Sensors 2022, 22, 2222. https://doi.org/10.3390/s22062222
Li M, Kuang Y, Fan Z, Qin X, Hu S, Liang Z, Liu Q, Zhang W, Wang B, Su Z. Simultaneous Electrochemical Sensing of Indole-3-Acetic Acid and Salicylic Acid on Poly(L-Proline) Nanoparticles–Carbon Dots–Multiwalled Carbon Nanotubes Composite-Modified Electrode. Sensors. 2022; 22(6):2222. https://doi.org/10.3390/s22062222
Chicago/Turabian StyleLi, Mengxue, Yiwen Kuang, Ziyan Fan, Xiaoli Qin, Shiyu Hu, Zhanning Liang, Qilin Liu, Weizhong Zhang, Birui Wang, and Zhaohong Su. 2022. "Simultaneous Electrochemical Sensing of Indole-3-Acetic Acid and Salicylic Acid on Poly(L-Proline) Nanoparticles–Carbon Dots–Multiwalled Carbon Nanotubes Composite-Modified Electrode" Sensors 22, no. 6: 2222. https://doi.org/10.3390/s22062222