Diabetes Detection and Management through Photoplethysmographic and Electrocardiographic Signals Analysis: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Eligibility Criteria
- Only papers written in English;
- Only papers with diabetes detection, glucose estimation and diabetes complications detection as the main topic;
- Only papers dealing with the management of type 1, type 2, gestational diabetes or diabetes complications;
- Only papers that focus on diabetes care through ECG and/or PPG analysis;
- Only papers addressing the topic with traditional methods, machine learning or deep learning methods.
2.2. Data Sources and Search Strategy
2.3. Study Selection
2.4. Data Extraction
3. Diabetes
3.1. Blood Glucose Homeostasis
3.2. Type 1 Diabetes
3.3. Type 2 Diabetes
3.4. Gestational Diabetes
3.5. Diabetes Complications
3.6. Conventional Tests for Diabetes Diagnosis
3.7. Diabetes Treatments
4. PPG and ECG
4.1. The Cardiac Cycle
4.2. Electrocardiography
4.3. Photopletysmography
5. Results and Discussion
5.1. Traditional Methods
5.1.1. Diabetes Detection with Traditional Methods
5.1.2. Blood Glucose Estimation with Traditional Methods
5.1.3. Diabetes Complications with Traditional Methods
5.1.4. Traditional Approaches: Main Outcomes
5.2. Machine Learning
5.2.1. Diabetes Detection with Machine Learning
5.2.2. Blood Glucose Estimation with Machine Learning
5.2.3. Diabetes Complications with Machine Learning
5.2.4. Machine Learning: Main Outcomes
5.3. Deep Learning
5.3.1. Diabetes Detection with Deep Learning
5.3.2. Blood Glucose Estimation with Deep Learning
5.3.3. Diabetes Complications with Deep Learning
5.3.4. Deep Learning: Main Outcomes
6. Conclusions
- Data processing standardization.
- –
- In all the proposed approaches (traditional methods, machine learning and deep learning ones) signal processing and features extraction is a very important step. The authors should provide the maximum of details to allow reproducibility.
- –
- When testing the model is necessary (as for ML and DL), the splitting process should be performed with much attention to avoid biased results.
- Standardization of performance analysis.
- –
- Performance is analyzed with a variety of parameters. The wide spectrum of performance parameters allows researchers to highlight different advantages and limitations of the proposed method. Future studies should be focused on creating guidelines on performance analysis to allow cross analysis.
- Clinical validation.
- –
- To our knowledge, none of the proposed methods have been clinically validated. ECG and PPG analyses for diabetes care is still an open research topic. However, to achieve the objective of employing these analyses in clinical environments, clinical validation is a step that cannot be skipped.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Giugliano, D.; Ceriello, A.; Esposito, K. Glucose metabolism and hyperglycemia. Am. J. Clin. Nutr. 2008, 87, 217S–222S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Diabetes. Available online: https://www.who.int/health-topics/diabetes (accessed on 20 April 2022).
- Maraschin, J.d.F. Classification of diabetes. Diabetes 2013, 771, 12–19. [Google Scholar]
- LaMonte, M.J.; Blair, S.N.; Church, T.S. Physical activity and diabetes prevention. J. Appl. Physiol. 2005, 99, 1205–1213. [Google Scholar] [CrossRef] [Green Version]
- Beam, A.L.; Kohane, I.S. Big Data and Machine Learning in Health Care. JAMA 2018, 319, 1317–1318. [Google Scholar] [CrossRef]
- Chaki, J.; Thillai Ganesh, S.; Cidham, S.K.; Ananda Theertan, S. Machine learning and artificial intelligence based Diabetes Mellitus detection and self-management: A systematic review. J. King Saud Univ. Comput. Inf. Sci. 2020. [Google Scholar] [CrossRef]
- Anwar, F.; Qurat-Ul-Ain; Ejaz, M.Y.; Mosavi, A. A comparative analysis on diagnosis of diabetes mellitus using different approaches—A survey. Inform. Med. Unlocked 2020, 21, 100482. [Google Scholar] [CrossRef]
- Zhu, T.; Li, K.; Herrero, P.; Georgiou, P. Deep Learning for Diabetes: A Systematic Review. IEEE J. Biomed. Health Inform. 2021, 25, 2744–2757. [Google Scholar] [CrossRef]
- Jeon, T.; Kim, B.; Jeon, M.; Lee, B.G. Implementation of a portable device for real-time ECG signal analysis. Biomed. Eng. Online 2014, 13, 160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maeda, Y.; Sekine, M.; Tamura, T. The advantages of wearable green reflected photoplethysmography. J. Med. Syst. 2011, 35, 829–834. [Google Scholar] [CrossRef] [PubMed]
- Gusev, M.; Poposka, L.; Spasevski, G.; Kostoska, M.; Koteska, B.; Simjanoska, M.; Ackovska, N.; Stojmenski, A.; Tasic, J.; Trontelj, J. Noninvasive Glucose Measurement Using Machine Learning and Neural Network Methods and Correlation with Heart Rate Variability. J. Sens. 2020, 2020, 9628281. [Google Scholar] [CrossRef]
- Swapna, G.; Soman, K.P.; Vinayakumar, R. Diabetes Detection Using ECG Signals: An Overview. In Deep Learning Techniques for Biomedical and Health Informatics; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Lu, G.; Yang, F.; Taylor, J.A.; Stein, J.F. A comparison of photoplethysmography and ECG recording to analyse heart rate variability in healthy subjects. J. Med. Eng. Technol. 2009, 33, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Kinnunen, H.; Rantanen, A.; Kentt, T.; Koskim ki, H. Feasible assessment of recovery and cardiovascular health: Accuracy of nocturnal HR and HRV assessed via ring PPG in comparison to medical grade ECG. Physiol. Meas. 2020, 41, 04NT01. [Google Scholar] [CrossRef] [PubMed]
- Baldoumas, G.; Peschos, D.; Tatsis, G.; Christofilakis, V.; Chronopoulos, S.K.; Kostarakis, P.; Varotsos, P.A.; Sarlis, N.V.; Skordas, E.S.; Bechlioulis, A.; et al. Remote sensing natural time analysis of heartbeat data by means of a portable photoplethysmography device. Int. J. Remote. Sens. 2021, 42, 2292–2302. [Google Scholar] [CrossRef]
- Dissemination, U. Undertaking Systematic Reviews of Research on Effectiveness: CRD’s Guidance for Carrying Out or Commissioning Reviews; NHS Centre for Reviews and Dissemination: York, UK, 2001. [Google Scholar]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation And Elaboration. J. Clin. Epidemiol. 2009, 62, e1–e34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 2020–2021. [Google Scholar] [CrossRef]
- Mendeley Ltd. Available online: https://www.mendeley.com/ (accessed on 20 April 2022).
- Gerich, J.E. Physiology of glucose homeostasis. Diabetes Obes. Metab. 2000, 2, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Piché, M.É.; Arcand-Bossé, J.F.; Després, J.P.; Pérusse, L.; Lemieux, S.; Weisnagel, S.J. What is a normal glucose value? Differences in indexes of plasma glucose homeostasis in subjects with normal fasting glucose. Diabetes Care 2004, 27, 2470–2477. [Google Scholar]
- Moede, T.; Leibiger, I.B.; Berggren, P.O. Alpha cell regulation of beta cell function. Diabetologia 2020, 63, 2064–2075. [Google Scholar] [CrossRef]
- Hughes, D.S.; Narendran, P. Alpha cell function in type 1 diabetes. Br. J. Diabetes Vasc. Dis. 2014, 14, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Verier-Mine, O. Outcomes in women with a history of gestational diabetes. Screening and prevention of type 2 diabetes. Literature review. Diabetes Metab. 2010, 36, 595–616. [Google Scholar] [CrossRef] [PubMed]
- Malone, J.I.; Brodsky, S.J. The value of electrocardiogram monitoring in diabetic ketoacidosis. Diabetes Care 1980, 3, 543–547. [Google Scholar] [CrossRef]
- Creager, M.A.; Lüscher, T.F.; Cosentino, F.; Beckman, J.A. Diabetes and vascular disease. Pathophysiology, clinical consequences, and medical therapy: Part I. Circulation 2003, 108, 1527–1532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sala, L.L.; Prattichizzo, F.; Ceriello, A. The link between diabetes and atherosclerosis. Eur. J. Prev. Cardiol. 2019, 26, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Chistiakov, D. Mechanisms of Medial Arterial Calcification in Diabetes. Curr. Pharm. Des. 2014, 20, 5870–5883. [Google Scholar] [CrossRef]
- Bloomgarden, Z.T. Diabetic retinopathy and neuropathy. Diabetes Care 2005, 28, 963–970. [Google Scholar] [CrossRef] [Green Version]
- Lee, R.; Wong, T.Y.; Sabanayagam, C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis. 2015, 2, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Sulaiman, M.K. Diabetic nephropathy: Recent advances in pathophysiology and challenges in dietary management. Diabetol. Metab. Syndr. 2019, 11, 7. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.J.; Asbury, A.K. Diabetic neuropathy. Ann. Neurol. 1984, 15, 2–12. [Google Scholar] [CrossRef]
- Bowman, C.F.; Nichols, J.H. Comparison of Accuracy Guidelines for Hospital Glucose Meters. J. Diabetes Sci. Technol. 2020, 14, 546–552. [Google Scholar] [CrossRef]
- Clarke, W.L. The Original Clarke Error Grid Analysis (EGA). Diabetes Technol. Ther. 2005, 7, 776–779. [Google Scholar] [CrossRef] [PubMed]
- Fukuta, H.; Little, W.C. The Cardiac Cycle and the Physiologic Basis of Left Ventricular Contraction, Ejection, Relaxation, and Filling. Heart Fail. Clin. 2008, 4, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becker, D.E. Fundamentals of Electrocardiography Interpretation. Anesth. Prog. 2006, 53, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Chemla, D.; Young, J.; Badilini, F.; Maison-Blanche, P.; Affres, H.; Lecarpentier, Y.; Chanson, P. Comparison of fast Fourier transform and autoregressive spectral analysis for the study of heart rate variability in diabetic patients. Int. J. Cardiol. 2005, 104, 307–313. [Google Scholar] [CrossRef]
- Shaffer, F.; Ginsberg, J.P.; Shaffer, F. An Overview of Heart Rate variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [Green Version]
- Kamal, A.A.; Harness, J.B.; Irving, G.; Mearns, A.J. Skin photoplethysmography—A review. Comput. Methods Programs Biomed. 1989, 28, 257–269. [Google Scholar] [CrossRef]
- Vlachopoulos, C.; O’Rourke, M.; Nichols, W.W. McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Tamura, T.; Maeda, Y.; Sekine, M.; Yoshida, M. Wearable photoplethysmographic sensors—Past and present. Electronics 2014, 3, 282–302. [Google Scholar] [CrossRef]
- Elgendi, M. On the Analysis of Fingertip Photoplethysmogram Signals. Curr. Cardiol. Rev. 2012, 8, 14–25. [Google Scholar] [CrossRef]
- Pinto, C.; Parab, J.; Naik, G. Non-invasive hemoglobin measurement using embedded platform. Sens. Bio-Sens. Res. 2020, 29, 100370. [Google Scholar] [CrossRef]
- Hartmann, V.; Liu, H.; Chen, F.; Qiu, Q.; Hughes, S.; Zheng, D. Quantitative comparison of photoplethysmographic waveform characteristics: Effect of measurement site. Front. Physiol. 2019, 10, 198. [Google Scholar] [CrossRef]
- Kamiŝalić, A.; Fister, I.; Turkanović, M.; Karakatiĉ, S. Sensors and functionalities of non-invasive wrist-wearable devices: A review. Sensors 2018, 18, 1714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, M.; Zhang, X.; Chen, S.; Song, Y.; Zhao, Q.; Gao, X.; Wu, S. Arterial Stiffness Preceding Diabetes: A Longitudinal Study. Circ. Res. 2020, 127, 1491–1498. [Google Scholar] [CrossRef] [PubMed]
- Irace, C.; Carallo, C.; Scavelli, F.; De Franceschi, M.S.; Esposito, T.; Gnasso, A. Blood viscosity in subjects with normoglycemia and prediabetes. Diabetes Care 2014, 37, 488–492. [Google Scholar] [CrossRef] [Green Version]
- Masaoka, S.; Lev-Ran, A.; Hill, L.R.; Vakil, G.; Hon, E.H. Heart rate variability in diabetes: Relationship to age and duration of the disease. Diabetes Care 1985, 8, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Stern, S.; Sclarowsky, S. The ecg in diabetes mellitus. Circulation 2009, 120, 1633–1636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faust, O.; Acharya, U.R.; Molinari, F.; Chattopadhyay, S.; Tamura, T. Linear and non-linear analysis of cardiac health in diabetic subjects. Biomed. Signal Process. Control 2012, 7, 295–302. [Google Scholar] [CrossRef]
- Seyd, P.; Ahamed, V. Time and frequency domain analysis of heart rate variability and their correlations in diabetes mellitus. Int. J. Biol. Life Sci. 2008, 4, 24–27. [Google Scholar]
- Haryadi, B.; Liou, J.J.; Wei, H.C.; Xiao, M.X.; Wu, H.T.; Sun, C.K. Application of multiscale Poincaré short-time computation versus multiscale entropy in analyzing fingertip photoplethysmogram amplitudes to differentiate diabetic from non-diabetic subjects. Comput. Methods Programs Biomed. 2018, 166, 115–121. [Google Scholar] [CrossRef]
- Buchs, A.; Slovik, Y.; Rapoport, M.; Rosenfeld, C.; Khanokh, B.; Nitzan, M. Right-left correlation of the sympathetically induced fluctuations of photoplethysmographic signal in diabetic and non-diabetic subjects. Med. Biol. Eng. Comput. 2005, 43, 252–257. [Google Scholar] [CrossRef]
- Usman, S.; Mohamad Rozi, R.; Reaz, M.; Mohd Ali, M. Analysis of area under curve of PPG and its relation with HbA1c. In Proceedings of the 2012 IEEE-EMBS Conference on Biomedical Engineering and Sciences, Langkawi, Malaysia, 17–19 December 2012; pp. 260–263. [Google Scholar] [CrossRef]
- Wu, H.T.; Lee, C.Y.; Liu, C.C.; Liu, A.B. Multiscale cross-approximate entropy analysis as a measurement of complexity between ECG R-R interval and PPG pulse amplitude series among the normal and diabetic subjects. Comput. Math. Methods Med. 2013, 2013, 231762. [Google Scholar] [CrossRef]
- Pilt, K.; Meigas, K.; Ferenets, R.; Temitski, K.; Viigimaa, M. Photoplethysmographic signal waveform index for detection of increased arterial stiffness. Physiol. Meas. 2014, 35, 2027–2036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haryadi, B.; Gen-Min, L.; Chieh-Ming, Y.; Chiang, C.S.; Hsien-Tsai, W. Multiscale poincaré plots of photoplethysmographic pulse amplitude for appraising of diabetes. In Proceedings of the 2017 5th International Conference on Instrumentation, Control, and Automation, ICA 2017, Yogyakarta, Indonesia, 9–11 August 2017; pp. 126–129. [Google Scholar] [CrossRef]
- Hsu, P.C.; Wu, H.T.; Sun, C.K. Assessment of Subtle Changes in Diabetes-Associated Arteriosclerosis using Photoplethysmographic Pulse Wave from Index Finger. J. Med. Syst. 2018, 42, 43. [Google Scholar] [CrossRef] [PubMed]
- Usman, S.; Bani, N.A.; Kaidi, H.M.; Aris, S.A.M.; Jalil, S.Z.A.; Muhtazaruddin, M.N. Second derivative and contour analysis of PPG for diabetic patients. In Proceedings of the 2018 IEEE EMBS Conference on Biomedical Engineering and Sciences, IECBES 2018, Sarawak, Malaysia, 3–6 December 2018; pp. 59–62. [Google Scholar] [CrossRef]
- Singh, J.P.; Larson, M.G.; O’Donnell, C.J.; Wilson, P.F.; Tsuji, H.; Lloyd-Jones, D.M.; Levy, D. Association of hyperglycemia with reduced heart rate variability (The Framingham Heart Study). Am. J. Cardiol. 2000, 86, 309–312. [Google Scholar] [CrossRef]
- Harris, N.; Ireland, R.; Marques, J.; Hudson, S.; Davies, C.; Lee, S.; Robinson, R.; Heller, S. Can changes in QT interval be used to predict the onset of hypoglycemia in type 1 diabetes? In Proceedings of the Computers in Cardiology 2000. Vol. 27 (Cat. 00CH37163), Cambridge, MA, USA, 24–27 September 2000; pp. 375–378. [Google Scholar] [CrossRef]
- Laitinen, T.; Lyyra-Laitinen, T.; Huopio, H.; Vauhkonen, I.; Halonen, T.; Hartikainen, J.; Niskanen, L.; Laakso, M. Electrocardiographic alterations during hyperinsulinemic hypoglycemia in healthy subjects. Ann. Noninvasive Electrocardiol. 2008, 13, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.L.; Su, S.; Nguyen, H.T. Identification of Hypoglycemia and Hyperglycemia in Type 1 Diabetic patients using ECG parameters. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, San Diego, CA, USA, 28 August–1 September 2012; pp. 2716–2719. [Google Scholar] [CrossRef]
- Amanipour, R.; Nazeran, H.; Reyes, I.; Franco, M.; Haltiwanger, E. The effects of blood glucose changes on frequency-domain measures of HRV signal in type 1 diabetes. In Proceedings of the CONIELECOMP 2012–22nd International Conference on Electronics Communications and Computing, Cholula, Puebla, Mexico, 27–29 February 2012; pp. 50–54. [Google Scholar] [CrossRef]
- Kim, D.W.; Kim, S.W.; Kim, S.C.; Nam, K.C.; Kang, E.S.; Im, J.J. Detection of diabetic neuropathy using blood volume ratio of finger and toe by PPG. In Proceedings of the 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology, Lyon, France, 22–26 August 2007; pp. 2211–2214. [Google Scholar] [CrossRef]
- Wei, H.C.; Ta, N.; Hu, W.R.; Wang, S.Y.; Xiao, M.X.; Tang, X.J.; Chen, J.J.; Wu, H.T. Percussion entropy analysis of synchronized ECG and PPG signals as a prognostic indicator for future peripheral neuropathy in type 2 diabetic subjects. Diagnostics 2020, 10, 32. [Google Scholar] [CrossRef] [Green Version]
- Al-Hazimi, A.; Al-Ama, N.; Syiamic, A.; Qosti, R.; Al-Galil, K. Time-domain analysis of heart rate variability in diabetic patients with and without autonomic neuropathy. Ann. Saudi Med. 2002, 22, 400–403. [Google Scholar] [CrossRef] [Green Version]
- Cornforth, D.J.; Tarvainen, M.P.; Jelinek, H.F. Using renyi entropy to detect early cardiac autonomic neuropathy. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Osaka, Japan, 3–7 July 2013; pp. 5562–5565. [Google Scholar] [CrossRef]
- Imam, M.H.; Karmakar, C.K.; Jelinek, H.F.; Palaniswami, M.; Khandoker, A.H. Detecting subclinical diabetic cardiac autonomic neuropathy by analyzing ventricular repolarization dynamics. IEEE J. Biomed. Health Inform. 2016, 20, 64–72. [Google Scholar] [CrossRef]
- Boulton, A.J. Management of diabetic peripheral neuropathy. Clin. Diabetes 2005, 23, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Vinik, A.I.; Ziegler, D. Diabetic cardiovascular autonomic neuropathy. Circulation 2007, 115, 387–397. [Google Scholar] [CrossRef]
- Moreno, E.M.; Lujan, M.J.A.; Rusinol, M.T.; Fernandez, P.J.; Manrique, P.N.; Trivino, C.A.; Miquel, M.P.; Rodriguez, M.A.; Burguillos, M.J.G. Type 2 diabetes screening test by means of a pulse oximeter. IEEE Trans. Biomed. Eng. 2017, 64, 341–351. [Google Scholar] [CrossRef]
- Chu, J.; Yang, W.t.; Hsieh, T.h.; Yang, F.l. One-Minute Finger Pulsation Measurement for Diabetes Rapid Screening with 1.3% to 13% False-Negative Prediction Rate. Biomed. Stat. Inform. 2021, 6, 6–13. [Google Scholar] [CrossRef]
- Rajendra Acharya, U.; Vidya, K.S.; Ghista, D.N.; Lim, W.J.E.; Molinari, F.; Sankaranarayanan, M. Computer-aided diagnosis of diabetic subjects by heart rate variability signals using discrete wavelet transform method. Knowl.-Based Syst. 2015, 81, 56–64. [Google Scholar] [CrossRef]
- Amiri, M.; Zahedi, E.; Behnia, F. Autoregressive modeling of the photoplethysmogram AC signal amplitude changes after flow-mediated dilation in healthy and diabetic subjects. In Proceedings of the 2012 19th Iranian Conference of Biomedical Engineering (ICBME), Tehran, Iran, 20–21 December 2012; pp. 170–173. [Google Scholar] [CrossRef]
- Keikhosravi, A.; Aghajani, H.; Zahedi, E. Discrimination of bilateral finger photoplethysmogram responses to reactive hyperemia in diabetic and healthy subjects using a differential vascular model framework. Physiol. Meas. 2013, 34, 513–525. [Google Scholar] [CrossRef]
- Rajendra Acharya, U.; Faust, O.; Adib Kadri, N.; Suri, J.S.; Yu, W. Automated identification of normal and diabetes heart rate signals using nonlinear measures. Comput. Biol. Med. 2013, 43, 1523–1529. [Google Scholar] [CrossRef] [PubMed]
- Acharya, U.R.; Faust, O.; Sree, S.V.; Ghista, D.N.; Dua, S.; Joseph, P.; Ahamed, V.I.; Janarthanan, N.; Tamura, T. An integrated diabetic index using heart rate variability signal features for diagnosis of diabetes. Comput. Methods Biomech. Biomed. Eng. 2013, 16, 222–234. [Google Scholar] [CrossRef] [PubMed]
- Jian, L.W.; Lim, T.C. Automated detection of diabetes by means of higher order spectral features obtained from heart rate signals. J. Med. Imaging Health Inform. 2013, 3, 440–447. [Google Scholar] [CrossRef]
- Pachori, R.B.; Kumar, M.; Avinash, P.; Shashank, K.; Acharya, U.R. An improved online paradigm for screening of diabetic patients using RR-interval signals. J. Mech. Med. Biol. 2016, 16, 1640003. [Google Scholar] [CrossRef]
- Reddy, V.R.; Choudhury, A.D.; Jayaraman, S.; Thokala, N.K.; Deshpande, P.; Kaliaperumal, V. PerDMCS: Weighted fusion of PPG signal features for robust and efficient diabetes mellitus classification. In Proceedings of the HEALTHINF 2017–10th International Conference on Health Informatics; Part of 10th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2017, Porto, Portugal, 21–23 February 2017; Volume 5, pp. 553–560. [Google Scholar] [CrossRef]
- Nirala, N.; Periyasamy, R.; Singh, B.K.; Kumar, A. Detection of type-2 diabetes using characteristics of toe photoplethysmogram by applying support vector machine. Biocybern. Biomed. Eng. 2019, 39, 38–51. [Google Scholar] [CrossRef]
- Hettiarachchi, C.; Chitraranjan, C. A machine learning approach to predict diabetes using short recorded photoplethysmography and physiological characteristics. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); LNAI; Springer: Cham, Switzerland, 2019; Volume 11526, pp. 322–327. [Google Scholar] [CrossRef]
- Liang, Y.; Chen, Z.; Liu, G.; Elgendi, M. A new, short-recorded photoplethysmogram dataset for blood pressure monitoring in China. Sci. Data 2018, 5, 180020. [Google Scholar] [CrossRef] [Green Version]
- Qawqzeh, Y.K.; Bajahzar, A.S.; Jemmali, M.; Otoom, M.M.; Thaljaoui, A. Classification of Diabetes Using Photoplethysmogram (PPG) Waveform Analysis: Logistic Regression Modeling. Biomed Res. Int. 2020, 2020, 3764653. [Google Scholar] [CrossRef]
- Prabha, A.; Yadav, J.; Rani, A.; Singh, V. Non-invasive Diabetes Mellitus Detection System using Machine Learning Techniques. In Proceedings of the Confluence 2021: 11th International Conference on Cloud Computing, Data Science and Engineering, Noida, India, 28–29 January 2021; pp. 948–953. [Google Scholar] [CrossRef]
- Salamea, C.; Narvaez, E.; Montalvo, M. Database Proposal for Correlation of Glucose and Photoplethysmography Signals. In Proceedings of the 1st International Conference on Advances in Emerging Trends and Technologies (ICAETT 2019), Quito, Ecuador, 29–31 May 2019; Botto-Tobar, M., León-Acurio, J., Díaz Cadena, A., Montiel Díaz, P., Eds.; Advances in Intelligent Systems and Computing. Springer: Berlin/Heidelberg, Germany, 2020; Volume 2, pp. 44–53. [Google Scholar] [CrossRef]
- Monte-Moreno, E. Non-invasive estimate of blood glucose and blood pressure from a photoplethysmograph by means of machine learning techniques. Artif. Intell. Med. 2011, 53, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Mei, Z.; Zhang, Y.; Ma, X.; Lo, B.; Chen, D.; Zhang, Y. A Noninvasive Blood Glucose Monitoring System Based on Smartphone PPG Signal Processing and Machine Learning. IEEE Trans. Ind. Inform. 2020, 16, 7209–7218. [Google Scholar] [CrossRef]
- Cichosz, S.L.; Frystyk, J.; Hejlesen, O.K.; Tarnow, L.; Fleischer, J. A novel algorithm for prediction and detection of hypoglycemia based on continuous glucose monitoring and heart rate variability in patients with type 1 diabetes. J. Diabetes Sci. Technol. 2014, 8, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Ling, S.H.; Nguyen, H.T. Natural occurrence of nocturnal hypoglycemia detection using hybrid particle swarm optimized fuzzy reasoning model. Artif. Intell. Med. 2012, 55, 177–184. [Google Scholar] [CrossRef]
- Nuryani, S.L.; Nguyen, H.T. Electrocardiographic T-wave peak-to-end interval for hypoglycaemia detection. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 618–621. [Google Scholar] [CrossRef] [Green Version]
- Ling, S.S.; Nguyen, H.T. Genetic-algorithm-based multiple regression with fuzzy inference system for detection of nocturnal hypoglycemic episodes. IEEE Trans. Inf. Technol. Biomed. 2011, 15, 308–315. [Google Scholar] [CrossRef]
- Lipponen, J.A.; Kemppainen, J.; Karjalainen, P.A.; Laitinen, T.; Mikola, H.; Kärki, T.; Tarvainen, M.P. Hypoglycemia detection based on cardiac repolarization features. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 4697–4700. [Google Scholar] [CrossRef]
- Nuryani, N.; Ling, S.S.; Nguyen, H.T. Electrocardiographic signals and swarm-based support vector machine for hypoglycemia detection. Ann. Biomed. Eng. 2012, 40, 934–945. [Google Scholar] [CrossRef]
- Ling, S.H.; San, P.P.; Nguyen, H.T. Non-invasive hypoglycemia monitoring system using extreme learning machine for Type 1 diabetes. ISA Trans. 2016, 64, 440–446. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z. Non-invasive blood glucose estimation using nearinfrared spectroscopy based on SVR. In Proceedings of the 2017 IEEE 3rd Information Technology and Mechatronics Engineering Conference, ITOEC 2017, Chongqing, China, 3–5 October 2017; pp. 594–598. [Google Scholar] [CrossRef]
- Usman, S.; Harun, N.; Dziyauddin, R.A.; Bani, N.A. Estimation of hba1c level among diabetic patients using second derivative of photoplethysmography. In Proceedings of the 2017 IEEE Student Conference on Research and Development: Inspiring Technology for Humanity, SCOReD, Wilayah Persekutuan Putrajaya, Malaysia, 13–14 December 2017; pp. 89–92. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Xiao, Z. Non-invasive blood glucose detection using NIR based on GA and SVR. In Proceedings of the International Conference on Biological Information and Biomedical Engineering, BIBE 2018, Shanghai, China, 6–8 June 2018; pp. 105–108. [Google Scholar]
- Chowdhury, T.T.; Mishma, T.; Osman, S.; Rahman, T. Estimation of blood glucose level of type-2 diabetes patients using smartphone video through PCA-DA. In Proceedings of the 6th International Conference on Networking, Systems and Security, Dhaka, Bangladesh, 17–19 December 2019; pp. 104–108. [Google Scholar] [CrossRef]
- Gupta, S.S.; Hossain, S.; Haque, C.A.; Kim, K.D. In-Vivo Estimation of Glucose Level Using PPG Signal. In Proceedings of the International Conference on ICT Convergence, Jeju, Korea, 21–23 October 2020; pp. 733–736. [Google Scholar] [CrossRef]
- Hina, A.; Saadeh, W. A Noninvasive Glucose Monitoring SoC Based on Single Wavelength Photoplethysmography. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 504–515. [Google Scholar] [CrossRef]
- Sen Gupta, S.; Kwon, T.H.; Hossain, S.; Kim, K.D. Towards non-invasive blood glucose measurement using machine learning: An all-purpose PPG system design. Biomed. Signal Process. Control 2021, 68, 102706. [Google Scholar] [CrossRef]
- Islam, T.T.; Ahmed, M.S.; Hassanuzzaman, M.; Amir, S.A.B.; Rahman, T. Blood glucose level regression for smartphone ppg signals using machine learning. Appl. Sci. 2021, 11, 618. [Google Scholar] [CrossRef]
- Shamim, M.Z.M.; Alotaibi, S.; Hussein, H.S.; Farrag, M.; Shiblee, M. Diagnostic Accuracy of Smartphone connected Electrophysiological Biosensors for Prediction of Blood Glucose Level in a Type-2 Diabetic Patient using Machine Learning: A Pilot Study. IEEE Embed. Syst. Lett. 2021, 14, 27–30. [Google Scholar] [CrossRef]
- Guzman, L.; Cazares, A.M.G.; Martinez-Torteya, A. Model for Glycemic Level Detection using Heart Rate Variability in a Mexican Sample. In Proceedings of the 2020 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), Langkawi Island, Malaysia, 1–3 March 2021; pp. 505–510. [Google Scholar] [CrossRef]
- Susana, E.; Ramli, K.; Murfi, H.; Apriantoro, N.H. Non-Invasive Classification of Blood Glucose Level for Early Detection Diabetes Based on Photoplethysmography Signal. Information 2022, 13, 59. [Google Scholar] [CrossRef]
- Elvebakk, O.; Tronstad, C.; Birkeland, K.I.; Jenssen, T.G.; Bjørgaas, M.R.; Gulseth, H.L.; Kalvøy, H.; Høgetveit, J.O.; Martinsen, Ø.G. A multiparameter model for non-invasive detection of hypoglycemia. Physiol. Meas. 2019, 40, 085004. [Google Scholar] [CrossRef] [PubMed]
- Jelinek, H.F.; Cornforth, D.J.; Kelarev, A.V. Machine Learning Methods for Automated Detection of Severe Diabetic Neuropathy. J. Diabet. Complicat. Med. 2016, 1, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Faust, O.; Hagiwara, Y.; Hong, T.J.; Lih, O.S.; Acharya, U.R. Deep learning for healthcare applications based on physiological signals: A review. Comput. Methods Programs Biomed. 2018, 161, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Avram, R.; Tison, G.; Kuhar, P.; Marcus, G.; Pletcher, M.; Olgin, J.E.; Aschbacher, K. Predicting Diabetes From Photoplethysmography Using Deep Learning. J. Am. Coll. Cardiol. 2019, 73, 16. [Google Scholar] [CrossRef]
- Wang, L.; Mu, Y.; Zhao, J.; Wang, X.; Che, H. Igrnet: A deep learning model for non-invasive, real-time diagnosis of prediabetes through electrocardiograms. Sensors 2020, 20, 2556. [Google Scholar] [CrossRef]
- Srinivasan, V.B.; Foroozan, F. Deep Learning based non-invasive diabetes predictor using Photoplethysmography signals. In Proceedings of the European Signal Processing Conference, Dublin, Ireland, 23–27 August 2021; pp. 1256–1260. [Google Scholar] [CrossRef]
- Swapna, G.; Soman, K.P.; Vinayakumar, R. Automated detection of diabetes using CNN and CNN-LSTM network and heart rate signals. Procedia Comput. Sci. 2018, 132, 1253–1262. [Google Scholar] [CrossRef]
- Yildirim, O.; Talo, M.; Ay, B.; Baloglu, U.B.; Aydin, G.; Acharya, U.R. Automated detection of diabetic subject using pre-trained 2D-CNN models with frequency spectrum images extracted from heart rate signals. Comput. Biol. Med. 2019, 113, 103387. [Google Scholar] [CrossRef]
- Panwar, M.; Gautam, A.; Dutt, R.; Acharyya, A. CardioNet: Deep Learning Framework for Prediction of CVD Risk Factors. In Proceedings of the 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 12–14 October 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Johnson, A.E.; Pollard, T.J.; Shen, L.; Lehman, L.W.H.; Feng, M.; Ghassemi, M.; Moody, B.; Szolovits, P.; Anthony Celi, L.; Mark, R.G. MIMIC-III, a freely accessible critical care database. Sci. Data 2016, 3, 160035. [Google Scholar] [CrossRef] [Green Version]
- Habbu, S.K.; Joshi, S.; Dale, M.; Ghongade, R.B. Noninvasive Blood Glucose Estimation Using Pulse Based Cepstral Coefficients. In Proceedings of the 2019 2nd International Conference on Signal Processing and Information Security (ICSPIS), Dubai, United Arab Emirates, 30–31 October 2019; pp. 2019–2022. [Google Scholar] [CrossRef]
- Cordeiro, R.; Karimian, N.; Park, Y. Hyperglycemia identification using ecg in deep learning era. Sensors 2021, 21, 6263. [Google Scholar] [CrossRef]
- Porumb, M.; Stranges, S.; Pescapè, A.; Pecchia, L. Precision Medicine and Artificial Intelligence: A Pilot Study on Deep Learning for Hypoglycemic Events Detection based on ECG. Sci. Rep. 2020, 10, 170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, H.T.; Ghevondian, N.; Nguyen, S.T.; Jones, T.W. Detection of Hypoglycemic Episodes in Children with Type 1 Diabetes using an Optimal Bayesian Neural Network Algorithm. In Proceedings of the 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007; pp. 3140–3143. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Ghevondian, N.; Jones, T.W. Detection of nocturnal hypoglycemic episodes (natural occurrence) in children with Type 1 diabetes using an optimal Bayesian neural network algorithm. In Proceedings of the 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 20–25 August 2008; pp. 1311–1314. [Google Scholar]
- San, P.P.; Ling, S.H.; Nguyen, H.T. Block based neural network for hypoglycemia detection. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 5666–5669. [Google Scholar] [CrossRef] [Green Version]
- San, P.P.; Ling, S.H.; Nguyen, H.T. Intelligent detection of hypoglycemic episodes in children with type 1 diabetes using adaptive neural-fuzzy inference system. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 6325–6328. [Google Scholar] [CrossRef]
- San, P.P.; Ling, S.H.; Soe, N.N.; Nguyen, H.T. A novel extreme learning machine for hypoglycemia detection. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 302–305. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.; Su, S.W.; Nguyen, H.T. Neural network approach for non-invasive detection of hyperglycemia using electrocardiographic signals. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 4475–4478. [Google Scholar]
- San, P.P.; Ling, S.H.; Nguyen, H.T. Deep learning framework for detection of hypoglycemic episodes in children with type 1 diabetes. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Orlando, FL, USA, 16–20 August 2016; pp. 3503–3506. [Google Scholar] [CrossRef]
- Manurung, B.E.; Munggaran, H.R.; Ramadhan, G.F.; Koesoema, A.P. Non-Invasive Blood Glucose Monitoring using Near-Infrared Spectroscopy based on Internet of Things using Machine Learning. In Proceedings of the 2019 IEEE R10 Humanitarian Technology Conference (R10-HTC)(47129), Depok, West Java, Indonesia, 12–14 November 2019; pp. 5–11. [Google Scholar] [CrossRef]
- Hossain, S.; Debnath, B.; Biswas, S.; Al-Hossain, M.J.; Anika, A.; Zaman Navid, S.K. Estimation of Blood Glucose from PPG Signal Using Convolutional Neural Network. In Proceedings of the BECITHCON 2019–2019 IEEE International Conference on Biomedical Engineering, Computer and Information Technology for Health, Dhaka, Bangladesh, 28–30 November 2019; pp. 53–58. [Google Scholar] [CrossRef]
- Mahmud, T.; Subhana, A.; Shahnaz, C.; Limon, M.H.; Ahmed, S.; Rafi, M.Z.; Ahamed, B.; Nitol, S.S.; Mia, M.Y.; Choudhury, R.E.; et al. Non-invasive Blood Glucose Estimation Using Multi-sensor Based Portable and Wearable System. In Proceedings of the 2019 IEEE Global Humanitarian Technology Conference (GHTC), Seattle, WA, USA, 17–20 October 2019. [Google Scholar] [CrossRef]
- Islam, M.M.; Maniur, S.M. Design and Implementation of a Wearable System for Non-Invasive Glucose Level Monitoring. In Proceedings of the BECITHCON 2019–2019 IEEE International Conference on Biomedical Engineering, Computer and Information Technology for Health, Dhaka, Bangladesh, 28–30 November 2019; pp. 29–32. [Google Scholar] [CrossRef]
- Alkhodari, M.; Rashid, M.; Mukit, M.A.; Ahmed, K.I.; Mostafa, R.; Parveen, S.; Khandoker, A.H. Screening Cardiovascular Autonomic Neuropathy in Diabetic Patients With Microvascular Complications Using Machine Learning: A 24-Hour Heart Rate Variability Study. IEEE Access 2021, 9, 119171–119187. [Google Scholar] [CrossRef]
- Brigato, L.; Iocchi, L. A close look at deep learning with small data. In Proceedings of the International Conference on Pattern Recognition, Milan, Italy, 10–15 January 2021; pp. 2490–2497. [Google Scholar] [CrossRef]
- Zhu, M.; Li, J.; Li, Z.; Luo, W.; Dai, D.; Weaver, S.R.; Stauber, C.; Luo, R. Mortality rates and the causes of death related to diabetes mellitus in Shanghai Songjiang District: An 11-year retrospective analysis of death certificates. BMC Endocr. Disord. 2015, 15, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Diabetes Test | Description | Pre Diabetes | Diabetes |
---|---|---|---|
Fasting plasma glucose | After 8 h fasting | 100–125 mg/dL | >126 mg/dL |
Casual Plasma Glucose | Any time | None | >200 mg/dL |
Oral Glucose Tolerance | Fasting and every hour for 2 or 3 h | 140–199 mg/dL | >200 mg/dL |
Hemoglobin A1c | Any time | 5.7–6.4% | >6.5% |
Reference | Objective | Data Type a | Approach | Feature | Main Outcome |
---|---|---|---|---|---|
Buchs et al. [54] | Healthy vs. Diabetic | PPG [10 min] 68[33/35] In-house | Right-left correlation | Amplitude, baseline variation and period | Lower correlation in diabetic subjects |
Seyd et al. [52] | Healthy vs. Diabetic | ECG [1 h] 32[16/16] In-house | Statistical analysis | HRV | LF % power **, HF power ** lower in diabetic subjects |
Usman et al. [55] | Healthy diabetic vs. Unhealthy diabetic | PPG [90 s] 56 [30/26] In-house | Statistical analysis | AUC | AUC * |
Faust et al. [51] | Healthy vs. Diabetic | ECG [1h] 30 [15/15]In-house | Linear and non linear analysis | HRV | CD ***, ApEn ***, SampEn *** and recurrence plot properties *** |
Wu et al. [56] | Healthy vs. Diabetic | PPG - ECG [30 min] 51 [27/24] In-house | Multi scale Cross-approximate Entropy analysis | HRV | MC-ApEnLS ** |
Pilt et al. [57] | Healthy vs. Diabetic | PPG [-] 44 [24/20] In-house | Statistical analysis | PPG Augmentation Index | PPGAI *** |
Haryadi et al. [58] | Healthy vs. Diabetic vs. Unhealthy diabetic | PPG [1000 pulses] 52 [16/18/18] In-house | Multi scale poincaré analysis | Amplitude | SSR ** |
Hsu et al. [59] | Healthy vs. Diabetic | PPG [30 min]14 [48/46] In-house | Statistical analysis | CT, CTR, PWV | CTR ** |
Usman et al. [60] | Healthy diabetic vs. Unhealthy diabetic | PPG [90 s] 101 [53/48] In-house | Statistical analysis | Signal and 2nd derivative features | PPG slope angles ** |
Haryadi et al. [53] | Healthy vs. Diabetic | PPG [1000-500-250-100 pulses] 64 [34/30] In-house | Multi scale poincaré analysis | Amplitude | MSPI detect with higher sensibility wtr to the multiple temporal scale index and the single scale index. |
Reference | Objective | Data Type a | Approach | Feature | Main Outcome |
---|---|---|---|---|---|
Singh et al. [61] | Hypoglycemia detection (T1DM) | ECG [2 h] 1919 [1779/140] In-house | Linear analysis | HRV | SDNN, LF, HF ***diminished LF/HF, HF ** |
Harris et al. [62] | Hypoglycemia detection (T1DM) | ECG [night] 52 [20/32] In-house | Statistical analysis | QT, QTc | 4 out of 6 events correctly detected. QTc variaed more in diabetic subjects |
Laitinen et al. [63] | Hypoglycemia detection | ECG [5 min] 18 In-house | Statistical analysis | PR, QT, QTc | PR decreased ** QTc increased *** |
Nguyen et al. [64] | Hypoglycemia and hyperglycemiadetection (T1DM) | ECG [night] 5 In-house | Statistical analysis | HR, QTc, PR, RT, TpTe | Hypoglycemia: increased QTc, RTc, TpTe (***) Hyperglycemia: increased PR *** decreased QTc, RTc (***) |
Amanipour et al. [65] | Hypoglycemia detection (T1DM) | ECG [1 h] 1 In-house | Linear analysis | HRV | LF/HF inversely correlated with BG |
Reference | Objective | Data Type a | Approach | Feature | Main Outcome |
---|---|---|---|---|---|
Kim et al. [66] | Healthy vs. Diabetic with DPN | PPG [30 s] 114 [64/50] In-house | Statistical analysis | Finger to toe ratio | Sensitivity: 98% Specificity: 92.2% |
Wei et al. [67] | Healthy vs. Diabetic without DPN | PPG, ECG [1000 pulses] 122 [37/85] In-house | Percussion Entropy Analysis | PEI, MEI, LHR | PEI *** as indicator of future neuropathy |
Al-Hazimi [68] | Healthy vs. Diabetic without DPN vs. Diabetic with DPN | ECG [24 h] 30 [10/10/10] In-house | Linear analysis | HRV | No significant difference found in detecting neuropathy |
Cornforth et al. [69] | Diabetic vs. Diabetic with CAN | ECG [20 min] 149 [71/78] In-house | Multi scale Renyi entropy | Renyi Entropy | Renyi entropy *** |
Imam et al. [70] | Diabetic vs. Diabetic with CAN | ECG [20 min] 80 [40/40] In-house | Bivariate and trivariate ARMA models | QT, RR, EDR | EDR model based was able to detect among the groups |
Reference | Objective | Data Type a | Approach | Feature | Main Outcome |
---|---|---|---|---|---|
Amiri et al. [76] | Healthy vs. Diabetic | PPG [12 min] 30 [14/16] In-house | ARMA + SVM | Averaged ARMA model | Accuracy: 80% Sensitivity: 78.6% Specificity: 81% |
Keikhosravi et al. [77] | Healthy vs. Diabetic | PPG [12 min] 46 [23/23] In-house | Bayesian classifier | SVD | Accuracy: 93.5% Sensitivity: 100% Specificity: 87% |
Acharya et al. [78] | Healthy vs. Diabetic | ECG [2 s] 30 [15/15] In-house | AdaBoost | Signal features | Accuracy: 90% Sensitivity: 92.5% Specificity: 88.7% |
Acharya et al. [79] | Healthy vs. Diabetic | ECG [1 h] 30 [15/15] In-house | AdaBoost | Non-linear HRV | Accuracy: 86% Sensitivity: 87.5% Specificity: 84.6% |
Jian et al. [80] | Healthy vs. Diabetic | ECG [1 h] 30 [15/15] In-house | SVM | HRV (HOS) | Accuracy: 80% Sensitivity: 70.1% Specificity: 89.2% |
Acharya et al. [75] | Healthy vs. Diabetic | ECG [1 h] 30 [15/15] In-house | Decision Tree | DWT features from HR signal | Accuracy: 92% Sensitivity: 92.6% Specificity: 91.5% |
Monte-Moreno et al. [73] | Healthy vs. Diabetic | PPG [1 min] 1170 [340/830] In-house | RF, Gradient Boost | Signal features + physio data | Accuracy: 70% Sensitivity: 80% Specificity: 48% |
Pachori et al. [81] | Healthy vs. Diabetic | ECG [1 h] 30 [15/15] In-house | LS-SVM | R-R IMFs parameters | Accuracy: 95.63% Sensitivity: 97.5% Specificity: 93.7% |
Reddy et al. [82] | Healthy vs. Diabetic | PPG [5 min] 100 [50/50] In-house | SVM | HRV | Accuracy: 82% Sensitivity: 84% Specificity: 80% |
Nirala et al. [83] | Healthy vs. Diabetic | PPG [pulse] 135 In-house | SVM | Signal and derivatives parameters + eigenvalues | Accuracy: 97.87% Sensitivity: 98.78% Specificity: 96.6% |
Hettiarachchi et al. [84] | Healthy vs. Diabetic | PPG [2, 1 s] 150 [83/52] Public [85] | LDA | Signal features + physio data | Accuracy: 83% |
Qawqzeh et al. [86] | Healthy vs. Diabetic | PPG [-] 587 [-] In-house | Logistic Regression | Signal features + physio data | Accuracy: 92.3% Sensitivity: 70% Specificity: 96% |
Prabha et al. [87] | Healthy vs. Pre diabetic vs. Diabetic | PPG [5 s] 217 [-] Public [88] | Xboost | MFCC + physio data | Accuracy: 99.93% Sensitivity: 99.93% Specificity: 99.94% |
Prabha et al. [87] | Healthy vs. Pre diabetic vs. Diabetic | PPG [5 s] 217 [-] Public [88] | SVM | MFCC + physio data | Accuracy: 92.28% Sensitivity: 86% Specificity: 94% |
Chu et al. [74] | 5 levels diabetes risk | PPG, ECG [1 min] 2538 [1310/1228] In-house | Logistic regression | HRV + physio data | Accuracy: 90% Sensitivity: 92.5% Specificity: 88% |
Reference | Objective | Data Type a | Approach | Feature | Main Outcome |
---|---|---|---|---|---|
Nuryani et al. [93] | Hypoglycemia detection (T1DM) | ECG [8 h] 5 In-house | Fuzzy SVM | HR, QT, TT | Sensitivity: 74.2% Specificity: 59% |
Monte-Moreno [89] | Glucose level estimation (DM) | PPG [5 s] 410 [331/79] In-house | RF | Signal features + pyhisio data | r = 0.9 Clarke Error Grid [87.7% A; 10.3% B] |
Ling et al. [94] | Hypoglycemia detection (T1DM) | ECG [10 h] 16 In-house | GA-FI to | HR, QT and their variations | Sensitivity: 75% Specificity: 50% |
Lipponen et al. [95] | Hypoglycemia detection (T1DM) | ECG [5 min] 22 In-house | PCA | QT, RT amplitude ratio | 15/22 correct detection |
Nuryani et al. [96] | Hypoglycemia detection (T1DM) | ECG [8 h] 5 In-house | Swarm-based SVM | Signal features | Sensitivity: 70.9% Specificity: 81.5% |
Ling et al. [92] | Hypoglycemia detection (T1DM) | ECG [10 h] 16 In-house | HPSOWM-based FRM | HR, QT | Sensitivity: 85.7% Specificity: 79.8% |
Ling et al. [97] | Hypoglycemia detection (T1DM) | ECG [6 h] 16 In-house | Extreme learning algorith | Signal features | Sensitivity: 78% Specificity: 60% |
Zhang et al. [98] | Glucose level estimation | PPG [-] 18 In-house | SVR with GA | Signal features + physio data | r = 0.97 RMSE = 1.58 Clarke Error Grid [100% A] |
Usman et al. [99] | Glucose level estimation | PPG [-] 71 In-house | Logisitc Regression | Second derivative feature | Accuracy: 69% Sensitivity: 73% Specificity: 64.7% |
Zhang et al. [100] | Glucose level estimation | PPG [10 s] 18 In-house | SVR with GA | Signal features + physio data | Clarke Error Grid [100% A] |
Chowdhury et al. [101] | Glucose level estimation | PPG [60 s] 18 In-house | PCR | Signal and derivative features | SEP = 18.30 mg/dL Clarke Error Grid [82.6% A; 17.4% B] |
Zhang et al. [90] | Glucose level estimation (3 levels) | PPG [pulse] 80 [50/30] In-house | GSVM | GMM features | Accuracy: 81.49% Sensitivity: 79.6% Specificity: 83.2% |
Gupta et al. [102] | Glucose level estimation | PPG [-] - In-house | RF | Signal features + physio data | r = 0.81 |
Hina et al. [103] | Glucose level estimation | PPG [10 s] 200 In-house | Fine Gaussian SVR | Signal features | RMSE = 11.28 Clarke Error Grid [95% A] |
Gupta et al. [104] | Glucose level estimation | PPG [3 s] 26 In-house | XGBoost | Signal features + physio data | r = 0.94 MAE = 8.31 mg/dL |
Islam et al. [105] | Glucose level estimation | PPG [50 s] 52 In-house | PLS | Signal and derivative parameters | SEP = 17.02 mg/dL |
Shamim et al. [106] | Glucose level estimation | PPG, ECG [2 min] 1 In-house | CART | HRV | ECG HRV scored the best result. RMSE = 30 mg/dL |
Guzman et al. [107] | Glucose level estimation | PPG [10 min] 5 In-house | SVR | HRV, BMI, fatigue, DBP | MAE = 16.24 mg/dL |
Susuana et al. [108] | Glucose level estimation | PPG [11 s] 4 In-house | EBTA | Raw signal | Accuracy: 98% |
Cichosz et al. [91] | Hypoglicemia detection (T1DM) | ECG, CGM [5 min] 10 In-house | Mathematical prediction model | HRV, CGM data | Sensitivity: 79% Specificity: 99% AUC: 0.99 Lead time: 22 min improvement |
Elvebakk et al. [109] | Hypoglicemia detection (T1DM) | ECG, Activity, NIR, bioimpedance, skin temperature [30 min] 15 In-house | Multi parameter model | Probability of changes | Accuracy: 88% Sensitivity: 95% Specificity: 96% AUC: 0.97 |
Reference | Objective | Data Type a | Approach | Feature | Main Outcome |
---|---|---|---|---|---|
Jelinek et al. [110] | Healthy vs. Diabetic with CAN | ECG [20 min] 20 [-/20] In-house | GBMLS | HRV (MAF) | Sensitivity: 89% Specificity: 98% |
Reference | Objective | Data Type a | Approach | Feature | Main Outcome |
---|---|---|---|---|---|
Swapna [115] | Healthy vs. Diabetic | ECG [10 min] 20 In-house | CNN + LSTM + SVM | Raw signal | Accuracy: 95.7% |
Yildirim et al. [116] | Healthy vs. Diabetic | ECG [2 s] 30 [15/15] In-house | CNN | HR spectrogram | Accuracy: 97.62% Sensitivity: 100% Specificity: 96.72% |
Panwar et al. [117] | Healthy vs. Diabetic | PPG [2.1 s] 217 [-] Public [85] | CNN | Raw signal | Accuracy: 99.8% Sensitivity: 99.8% Specificity: 99.8% |
Avram et al. [112] | Healthy vs. Diabetic | PPG [21 s] 53870 [3584/50306] In-house | CNN + Logistic Regression | Raw signal+ physio data | Sensitivity: 75% Specificity: 65.4% AUC: 0.77 |
Wang et al. [113] | Healthy vs. Diabetic | ECG [5 s] - In-house | CNN | Raw signal+ physio data | Accuracy: 77.8% Sensitivity: 80.8% Specificity: 77.5% AUC: 0.77 |
Srinivasan et al. [114] | Healthy vs. Diabetic | PPG [30 s] 584 [467/341] Public [118] | CNN | Scalogram + physio data | Accuracy: 76.34% Sensitivity: 76.6% Specificity: 76.1% AUC: 0.83 |
Reference | Objective | Data Type a | Approach | Feature | Main Outcome |
---|---|---|---|---|---|
Nguyen et al. [122] | Hypoglycemia detection (T1DM) | ECG, GSR [4 h] 21 In-house | MLP | HR, QT length, skin impedance | Sensitivity: 95.2% Specificity: 41.4% |
Nguyen et al. [123] | Hypoglycemia detection (T1DM) | ECG, GSR [4 h] 16 In-house | Bayesian neural network | HR, QT length, skin impedance | Sensitivity: 89.2% % |
San et al. [124] | Hypoglycemia detection (T1DM) | ECG, GSR [10 h] 15 In-house | BBNN | HR, QT length, skin impedance | Sensitivity: 76.7% Specificity: 50.9% |
San et al. [125] | Hypoglycemia detection (T1DM) | ECG, GSR [10 h] 15 In-house | ANFIS | HR, QT | Sensitivity: 79% Specificity: 51.8% |
San et al. [126] | Hypoglycemia detection (T1DM) | ECG, GSR [10 h] 15 In-house | Rough BBNN | HR, QT and their variations | Sensitivity: 83.9% Specificity: 51.9% |
Nguyen et al. [127] | Hyperglycemia detection (T1DM) | ECG [9h] 10 In-house | LM algorithm. | 16 ECG parameters | Sensitivity: 70.6% Specificity: 65.4% |
San et al. [128] | Hypoglycemia detection (T1DM) | ECG [10 h] 15 In-house | DBN | HR, QTc | Sensitivity: 79.7% Specificity: 50% |
Manurung et al. [129] | Glucose level estimation | PPG [-] 51 In-house | MLP | Amplitude | MAE= 5.86 mg/dL |
Hossain et al. [130] | Glucose level estimation | PPG [10 s] 30 In-house | CNN | Signal and derivative features features | r = 0.95 MSE = 0.15 |
Habbu et al. [119] | Glucose level estimation | PPG [1 min] 611 In-house | ANN | Time and frequency features | r = 0.84 Clarke Error Grid [80.6% A; 17.4% B] |
Mahmud et al. [131] | Glucose level estimation | PPG, GSR, temperature [-] 15 In-house | CNN | Raw signal | Clarke Error Grid [80% A; 20% B] |
Habbu et al. [119] | Glucose level estimation (T2DM) | PPG [1 min] 611 [378/233] In-house | MLP | CC | r = 0.95 Clarke Error Grid [85.2% A; 13.6% B] |
Islam et al. [132] | Glucose level estimation (T2DM) | PPG, GSR [30 s] 25 [18/7] In-house | CNN | Raw signal | Clarke Error Grid [28% A; 43% B] |
Porumb et al. [121] | Hypoglycemia detection | ECG, activity [5 min] 5 In-house | CNN + RNN | Raw signals | Accuracy: 82.4% Sensitivity: 86% Specificity: 80.6% |
Cordeiro et al. [120] | Hypoglycemia detection | ECG [1 min] 1119 In-house | MLP | Signal features | Sensitivity: 87.6% Specificity: 85% AUC: 0.94 |
Reference | Objective | Data Type a | Approach | Feature | Main Outcome |
---|---|---|---|---|---|
Alkhodari et al. [133] | Diabetic vs. Diabetic with complications | ECG [5 min] 95 [25/70] In-house | CNN | HRV | Accuracy: 98.5% Sensitivity: 100% Specificity: 97% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zanelli, S.; Ammi, M.; Hallab, M.; El Yacoubi, M.A. Diabetes Detection and Management through Photoplethysmographic and Electrocardiographic Signals Analysis: A Systematic Review. Sensors 2022, 22, 4890. https://doi.org/10.3390/s22134890
Zanelli S, Ammi M, Hallab M, El Yacoubi MA. Diabetes Detection and Management through Photoplethysmographic and Electrocardiographic Signals Analysis: A Systematic Review. Sensors. 2022; 22(13):4890. https://doi.org/10.3390/s22134890
Chicago/Turabian StyleZanelli, Serena, Mehdi Ammi, Magid Hallab, and Mounim A. El Yacoubi. 2022. "Diabetes Detection and Management through Photoplethysmographic and Electrocardiographic Signals Analysis: A Systematic Review" Sensors 22, no. 13: 4890. https://doi.org/10.3390/s22134890