Automatic Detection of Liver Cancer Using Hybrid Pre-Trained Models
Abstract
:1. Introduction
2. Methodology
2.1. LiTS17 Dataset
2.2. 3D-IRCADb-01 Dataset
2.3. Data Augmentation
2.4. Proposed Learning Model
2.4.1. First Model (DeeplapV3 + ResNet-50)
Layers in Block 8
- Global average 2D pooling layer: Fully connected for downsampling operation, which was named the concatenate layer;
- Addition layer: Adding the output features of the layers in the same block, which was named the “add layer”;
- The output layer is of the dense layer type, which consists of the neurons of the output rows.
2.4.2. Second Model (VGG-16 + ResNet-50V2 + U-Net + LSTM)
- Global average 2D pooling layer: Fully connected for downsampling operation, which was named as concatenate layer;
- Dropout layer: Deletes or drops some units from the network to avoid the problem of overfitting by 0.5, which was named the “dropout layer”;
- Transpose layer: Transposes the weights and flips them by 180 degrees, which was named the Conv2DTran layer;
- The 2D convolution LSTM layer: Similar to an LSTM layer, but the input transformations and recurrent transformations are both convolutional, which was named the ConvLSTM2D layer.
3. Experimental Results and Analysis
3.1. Performance Metrics
3.2. Results of the LiTS17 Dataset
- The results of the first proposed model
- The results of the second proposed model
3.3. Results of the 3D-IRCADb-01 Dataset
- The results of the first proposed model
- The results of the second proposed model
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Liu, L.; Wang, L.; Xu, D.; Zhang, H.; Sharma, A.; Tiwari, S.; Kaur, M.; Khurana, M.; Shah, M.A. CT image segmentation method of liver tumor based on artificial intelligence enabled medical imaging. Math. Probl. Eng. 2021, 2021, 9919507. [Google Scholar] [CrossRef]
- Oliva, M.R.; Saini, S. Liver cancer imaging: Role of CT, MRI, US and PET. Cancer Imaging 2004, 4, S42–S46. [Google Scholar] [CrossRef]
- Low, R.N. Abdominal MRI advances in the detection of liver tumours and characterisation. Lancet Oncol. 2007, 8, 525–535. [Google Scholar] [CrossRef]
- Palmentieri, B.; De Sio, I.; La Mura, V.; Masarone, M.; Vecchione, R.; Bruno, S.; Torella, R.; Persico, M. The role of bright liver echo pattern on ultrasound B-mode examination in the diagnosis of liver steatosis. Dig. Liver Dis. 2006, 38, 485–489. [Google Scholar] [CrossRef]
- Legg, S.; Hutter, M. Universal intelligence: A definition of machine intelligence. Minds Mach. 2007, 17, 391–444. [Google Scholar] [CrossRef] [Green Version]
- Sedik, A.; Hammad, M.; Abd El-Latif, A.A.; El-Banby, G.M.; Khalaf, A.A.; Abd El-Samie, F.E.; Iliyasu, A.M. Deep learning modalities for biometric alteration detection in 5G networks-based secure smart cities. IEEE Access 2021, 9, 94780–94788. [Google Scholar] [CrossRef]
- Hammad, M.; Liu, Y.; Wang, K. Multimodal biometric authentication systems using convolution neural network based on different level fusion of ECG and fingerprint. IEEE Access 2018, 7, 26527–26542. [Google Scholar] [CrossRef]
- Bianco, S.; Napoletano, P. Biometric recognition using multimodal physiological signals. IEEE Access 2019, 7, 83581–83588. [Google Scholar] [CrossRef]
- Shahin, A.I.; Almotairi, S. An accurate and fast cardio-views classification system based on fused deep features and LSTM. IEEE Access 2020, 8, 135184–135194. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhu, X.; Lu, J. Fitness monitoring system based on internet of things and big data analysis. IEEE Access 2021, 9, 8054–8068. [Google Scholar] [CrossRef]
- Książek, W.; Hammad, M.; Pławiak, P.; Acharya, U.R.; Tadeusiewicz, R. Development of novel ensemble model using stacking learning and evolutionary computation techniques for automated hepatocellular carcinoma detection. Biocybern. Biomed. Eng. 2020, 40, 1512–1524. [Google Scholar] [CrossRef]
- Zhen, S.H.; Cheng, M.; Tao, Y.B.; Wang, Y.F.; Juengpanich, S.; Jiang, Z.Y.; Jiang, Y.K.; Yan, Y.Y.; Lu, W.; Lue, J.M.; et al. Deep learning for accurate diagnosis of liver tumor based on magnetic resonance imaging and clinical data. Front. Oncol. 2020, 10, 680. [Google Scholar] [CrossRef]
- Hamm, C.A.; Wang, C.J.; Savic, L.J.; Ferrante, M.; Schobert, I.; Schlachter, T.; Lin, M.; Duncan, J.S.; Weinreb, J.C.; Chapiro, J.; et al. Deep learning for liver tumor diagnosis part I: Development of a convolutional neural network classifier for multi-phasic MRI. Eur. Radiol. 2019, 29, 3338–3347. [Google Scholar] [CrossRef]
- Polaka, I.; Bhandari, M.P.; Mezmale, L.; Anarkulova, L.; Veliks, V.; Sivins, A.; Lescinska, A.M.; Tolmanis, I.; Vilkoite, I.; Ivanovs, I.; et al. Modular Point-of-Care Breath Analyzer and Shape Taxonomy-Based Machine Learning for Gastric Cancer Detection. Diagnostics 2022, 12, 491. [Google Scholar] [CrossRef]
- Hammad, M.; Kandala, R.N.; Abdelatey, A.; Abdar, M.; Zomorodi-Moghadam, M.; San Tan, R.; Acharya, U.R.; Pławiak, J.; Tadeusiewicz, R.; Makarenkov, V.; et al. Automated detection of shockable ECG signals: A review. Inf. Sci. 2021, 571, 580–604. [Google Scholar] [CrossRef]
- Książek, W.; Abdar, M.; Acharya, U.R.; Pławiak, P. A novel machine learning approach for early detection of hepatocellular carcinoma patients. Cogn. Syst. Res. 2019, 54, 116–127. [Google Scholar] [CrossRef]
- Lv, P.; Wang, J.; Wang, H. 2.5 D lightweight RIU-Net for automatic liver and tumor segmentation from CT. Biomed. Signal Process. Control. 2022, 75, 103567. [Google Scholar] [CrossRef]
- Mohammed, Y.S.; Abdelkader, H.; Pławiak, P.; Hammad, M. A novel model to optimize multiple imputation algorithm for missing data using evolution methods. Biomed. Signal Process. Control. 2022, 76, 103661. [Google Scholar] [CrossRef]
- Kim, S.; Park, J. Hybrid feature selection method based on neural networks and cross-validation for liver cancer with microarray. IEEE Access 2018, 6, 78214–78224. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Z.; Sun, Y.; Zhang, X.; Li, W.; Ge, Y.; Huang, X.; Liu, Y.; Chen, Y. SCCNN: A diagnosis method for hepatocellular carcinoma and intrahepatic cholangiocarcinoma based on siamese cross contrast neural network. IEEE Access 2020, 8, 85271–85283. [Google Scholar] [CrossRef]
- Das, A.; Acharya, U.R.; Panda, S.S.; Sabut, S. Deep learning based liver cancer detection using watershed transform and Gaussian mixture model techniques. Cogn. Syst. Res. 2019, 54, 165–175. [Google Scholar] [CrossRef]
- Ghoniem, R.M. A novel bio-inspired deep learning approach for liver cancer diagnosis. Information 2020, 11, 80. [Google Scholar] [CrossRef] [Green Version]
- Dong, X.; Zhou, Y.; Wang, L.; Peng, J.; Lou, Y.; Fan, Y. Liver cancer detection using hybridized fully convolutional neural network based on deep learning framework. IEEE Access 2020, 8, 129889–129898. [Google Scholar] [CrossRef]
- Sureshkumar, V.; Chandrasekar, V.; Venkatesan, R.; Prasad, R.K. Improved performance accuracy in detecting tumor in liver using deep learning techniques. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 5763–5770. [Google Scholar] [CrossRef]
- Kaur, A.; Chauhan, A.P.S.; Aggarwal, A.K. An automated slice sorting technique for multi-slice computed tomography liver cancer images using convolutional network. Expert Syst. Appl. 2021, 186, 115686. [Google Scholar] [CrossRef]
- Shukla, P.K.; Zakariah, M.; Hatamleh, W.A.; Tarazi, H.; Tiwari, B. AI-DRIVEN novel approach for liver cancer screening and prediction using cascaded fully convolutional neural network. J. Healthc. Eng. 2022, 2022, 4277436. [Google Scholar] [CrossRef]
- Aatresh, A.A.; Alabhya, K.; Lal, S.; Kini, J.; Saxena, P.U. LiverNet: Efficient and robust deep learning model for automatic diagnosis of sub-types of liver hepatocellular carcinoma cancer from H&E stained liver histopathology images. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 1549–1563. [Google Scholar]
- Sun, C.; Xu, A.; Liu, D.; Xiong, Z.; Zhao, F.; Ding, W. Deep learning-based classification of liver cancer histopathology images using only global labels. IEEE J. Biomed. Health Inform. 2019, 24, 1643–1651. [Google Scholar] [CrossRef]
- Randhawa, S.; Alsadoon, A.; Prasad, P.W.C.; Al-Dala’in, T.; Dawoud, A.; Alrubaie, A. Deep learning for liver tumour classification: Enhanced loss function. Multimed. Tools Appl. 2021, 80, 4729–4750. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, B.; Wu, J.; Ji, D.; Liu, Y.; Chen, Y.; Wu, E.; Tang, X. Deep learning initialized and gradient enhanced level-set based segmentation for liver tumor from CT images. IEEE Access 2020, 8, 76056–76068. [Google Scholar] [CrossRef]
- Rela, M.; Suryakari, N.R.; Reddy, P.R. Liver tumor segmentation and classification: A systematic review. IEEE HYDCON 2020, 2020, 1–6. [Google Scholar]
- Xiang, K.; Jiang, B.; Shang, D. The overview of the deep learning integrated into the medical imaging of liver: A review. Hepatol. Int. 2021, 15, 868–880. [Google Scholar] [CrossRef]
- Soler, L.; Hostettler, A.; Agnus, V.; Charnoz, A.; Fasquel, J.; Moreau, J.; Osswald, A.; Bouhadjar, M.; Marescaux, J. 3D Image Reconstruction for Comparison of Algorithm Database: A Patient Specific Anatomical and Medical Image Database; IRCAD: Strasbourg, France, 2010. [Google Scholar]
- Kourou, K.; Exarchos, K.P.; Papaloukas, C.; Sakaloglou, P.; Exarchos, T.; Fotiadis, D.I. Applied machine learning in cancer research: A systematic review for patient diagnosis, classification and prognosis. Comput. Struct. Biotechnol. J. 2021, 19, 5546–5555. [Google Scholar] [CrossRef]
- Bilic, P.; Christ, P.F.; Vorontsov, E.; Chlebus, G.; Chen, H.; Dou, Q.; Fu, C.; Han, X.; Heng, P.; Hesser, J.; et al. The liver tumor segmentation benchmark (LiTs). arXiv 2019, arXiv:1901.04056. [Google Scholar]
- Yurtkulu, S.C.; Şahin, Y.H.; Unal, G. Semantic segmentation with extended DeepLabv3 architecture. In Proceedings of the 2019 27th Signal Processing and Communications Applications Conference (SIU), Sivas, Turkey, 24–26 April 2019; pp. 1–4. [Google Scholar]
- Al-Haija, Q.A.; Adebanjo, A. Breast cancer diagnosis in histopathological images using ResNet-50 convolutional neural network. In Proceedings of the 2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), Vancouver, BC, Canada, 9–12 September 2020; pp. 1–7. [Google Scholar]
- Gómez-Flores, W.; de Albuquerque Pereira, W.C. A comparative study of pre-trained convolutional neural networks for semantic segmentation of breast tumors in ultrasound. Comput. Biol. Med. 2020, 126, 104036. [Google Scholar] [CrossRef]
- Mubarak, D.M.N. Classification of early stages of esophageal cancer using transfer learning. IRBM, 2021; in press. [Google Scholar] [CrossRef]
- Abedalla, A.; Abdullah, M.; Al-Ayyoub, M.; Benkhelifa, E. Chest X-ray pneumothorax segmentation using U-Net with EfficientNet and ResNet architectures. PeerJ Comput. Sci. 2021, 7, e607. [Google Scholar] [CrossRef]
- Amin, J.; Anjum, M.A.; Malik, M. Fused information of DeepLabv3+ and transfer learning model for semantic segmentation and rich features selection using equilibrium optimizer (EO) for classification of NPDR lesions. Knowl. Based Syst. 2022, 249, 108881. [Google Scholar] [CrossRef]
- Tammina, S. Transfer learning using VGG-16 with deep convolutional neural network for classifying images. Int. J. Sci. Res. Publ. 2019, 9, 143–150. [Google Scholar] [CrossRef]
- Sertic, P.; Alahmar, A.; Akilan, T.; Javorac, M.; Gupta, Y. Intelligent Real-Time Face-Mask Detection System with Hardware Acceleration for COVID-19 Mitigation. Healthcare 2022, 10, 873. [Google Scholar] [CrossRef]
- Iglovikov, V.; Shvets, A. Ternausnet: U-net with vgg11 encoder pre-trained on imagenet for image segmentation. arXiv 2018, arXiv:1801.05746. [Google Scholar]
- Maragatham, G.; Devi, S. LSTM model for prediction of heart failure in big data. J. Med. Syst. 2019, 43, 111. [Google Scholar] [CrossRef]
- Awassa, L.; Jdey, I.; Dhahri, H.; Hcini, G.; Mahmood, A.; Othman, E.; Haneef, M. Study of Different Deep Learning Methods for Coronavirus (COVID-19) Pandemic: Taxonomy, Survey and Insights. Sensors 2022, 22, 1890. [Google Scholar] [CrossRef]
- Chen, P.H.; Huang, C.H.; Chiu, W.T.; Liao, C.M.; Lin, Y.R.; Hung, S.K.; Chen, L.C.; Hsieh, H.L.; Chiou, W.Y.; Lee, M.S.; et al. A multiple organ segmentation system for CT image series using Attention-LSTM fused U-Net. Multimed. Tools Appl. 2022, 81, 11881–11895. [Google Scholar] [CrossRef]
- Li, J.; Ou, X.; Shen, N.; Sun, J.; Ding, J.; Zhang, J.; Yao, J.; Wang, Z. Study on strategy of CT image sequence segmentation for liver and tumor based on U-Net and Bi-ConvLSTM. Expert Syst. Appl. 2021, 180, 115008. [Google Scholar] [CrossRef]
- Liu, M.; Chen, L.; Du, X.; Jin, L.; Shang, M. Activated gradients for deep neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2021, 1–13. [Google Scholar] [CrossRef]
Acc | P | R | Dice_cof |
---|---|---|---|
0.995 | 0.864 | 0.979 | 0.516 |
Acc | P | R | Dice_cof |
---|---|---|---|
0.991 | 0.778 | 0.846 | 0.291 |
Acc | P | R | Dice_cof |
---|---|---|---|
0.995 | 0.514 | 0.986 | 0.561 |
Acc | P | R | Dice_cof |
---|---|---|---|
0.984 | 0.735 | 0.802 | 0.405 |
Activation Function | Performance (%) |
---|---|
ReLU | Acc = 99.50 Dice_cof = 51.64 P = 86.41 R = 97.92 |
Leaky ReLU | Acc = 98.84 Dice_cof = 24.45 P = 75.52 R = 21.50 |
Tanh | Acc = 98.43 Dice_cof = 26.19 P = 73.78 R = 22.45 |
Author | Methodology | No. Images | Accuracy |
---|---|---|---|
Das et al. [22] | WGDL+ GMM+ DNN | 225 CT images | 99.39% |
Ghoniem [23] | LeNet-5/ABC | 131 CT images | 98.50% |
Dong et al. [24] | HFCNN | N/A | 97.22% |
Kaur et al. [26] | CNN | 63503 CT images | 99.10% |
Shukla et al. [27] | Cascaded CNN | 1421 CT images | 94.21% |
Proposed | DeeplapV3 + ResNet-50 | 130 CT images LITS dataset and 26CT images 3Dicdb dataset | 99.50% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Othman, E.; Mahmoud, M.; Dhahri, H.; Abdulkader, H.; Mahmood, A.; Ibrahim, M. Automatic Detection of Liver Cancer Using Hybrid Pre-Trained Models. Sensors 2022, 22, 5429. https://doi.org/10.3390/s22145429
Othman E, Mahmoud M, Dhahri H, Abdulkader H, Mahmood A, Ibrahim M. Automatic Detection of Liver Cancer Using Hybrid Pre-Trained Models. Sensors. 2022; 22(14):5429. https://doi.org/10.3390/s22145429
Chicago/Turabian StyleOthman, Esam, Muhammad Mahmoud, Habib Dhahri, Hatem Abdulkader, Awais Mahmood, and Mina Ibrahim. 2022. "Automatic Detection of Liver Cancer Using Hybrid Pre-Trained Models" Sensors 22, no. 14: 5429. https://doi.org/10.3390/s22145429