Human Postures Recognition by Accelerometer Sensor and ML Architecture Integrated in Embedded Platforms: Benchmarking and Performance Evaluation
Abstract
:1. Introduction
- an algorithmic framework for the classification of postures by using only one commercial wearable sensor is designed and implemented;
- three different ML classification algorithms are compared to distinguish between posture;
- a performance comparison of the proposed algorithm between a PC and previously mentioned embedded platforms demonstrated real-time operation on such platforms in terms of processing time, power consumption, and computation flexibility.
2. Materials and Methods
2.1. Wearable System
2.1.1. Pre-Processing and Calibration Phases
2.1.2. Feature Extraction and Selection Phases
2.1.3. Classification
2.2. Elaboration Units
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Population_structure_and_ageing#The_share_of_elderly_people_continues_to_increase/ (accessed on 21 November 2022).
- Arakawa, T.; Dao, D.V.; Mitsubayashi, K. Biosensors and Chemical Sensors for Healthcare Monitoring: A Review. IEEJ Trans. Electr. Electron. Eng. 2022, 17, 626–636. [Google Scholar] [CrossRef]
- De Pascali, C.; Francioso, L.; Giampetruzzi, L.; Rescio, G.; Signore, M.A.; Leone, A.; Siciliano, P. Modeling, Fabrication and Integration of Wearable Smart Sensors in a Monitoring Platform for Diabetic Patients. Sensors 2021, 21, 1847. [Google Scholar] [CrossRef] [PubMed]
- Saleem, K.; Bajwa, I.S.; Sarwar, N.; Anwar, W.; Ashraf, A. IoT healthcare: Design of smart and cost-effective sleep quality monitoring system. J. Sensors 2020, 2020, 8882378. [Google Scholar] [CrossRef]
- Ivanenko, Y.; Gurfinkel, V.S. Human postural control. Front. Neurosci. 2018, 12, 171. [Google Scholar] [CrossRef] [PubMed]
- Reinecke, S.; Weisman, G.; Pope, M.H. Effects of Body Position and Centre of Gravity on Tolerance of Seated Postures. In Hard Facts about Soft Machines; CRC Press: Boca Raton, FL, USA, 2020; pp. 165–171. [Google Scholar]
- Iazzi, A.; Rziza, M.; Thami, R.O.H. Fall Detection based on Posture Analysis and Support Vector Machine. In Proceedings of the 4th IEEE International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), Sousse, Tunisia, 21–24 March 2018; pp. 1–6. [Google Scholar]
- Liu, J.; Chen, X.; Chen, S.; Liu, X.; Wang, Y.; Chen, L. Tagsheet: Sleeping posture recognition with an unobtrusive passive tag matrix. In Proceedings of the IEEE International Conference on Computer Communications, Paris, France, 29 April–2 May 2019; pp. 874–882. [Google Scholar]
- Mallare, J.C.T.M.; Pineda, D.F.G.; Trinidad, G.M.; Serafica, R.D.; Villanueva, J.B.K.; Dela Cruz, A.R.; Vicerra, R.R.P.; Serrano, K.K.D.; Roxas, E.A. Sitting posture assessment using computer vision. In Proceedings of the 2017 IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), Manila, Philippines, 1–3 December 2017; pp. 1–5. [Google Scholar]
- Wang, H.Y.; Zhao, M.M.; Beurier, G.; Wang, X.G. Automobile driver posture monitoring systems: A review. China J. Highw. Transp. 2019, 2, 1–18. [Google Scholar]
- Pellegrini, S.; Iocchi, L. Human posture tracking and classification through stereo vision and 3d model matching. EURASIP J. Image Video Process. 2007, 2008, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Rougier, C.; Meunier, J.; St-Arnaud, A.; Rousseau, J. 3D head tracking for fall detection using a single calibrated camera. Image Vis. Comput. 2013, 31, 246–254. [Google Scholar] [CrossRef]
- Fan, K.; Wang, P.; Hu, Y.; Dou, B. Fall detection via human posture representation and support vector machine. Int. J. Distrib. Sens. Netw. 2017, 13, 1550147717707418. [Google Scholar] [CrossRef]
- Iazzi, A.; Rziza, M.; Oulad Haj Thami, R. Fall Detection System-Based Posture-Recognition for Indoor Environments. J. Imaging 2021, 7, 42. [Google Scholar] [CrossRef]
- Rosero-Montalvo, P.; Jaramillo, D.; Flores, S.; Peluffo, D.; Alvear, V.; Lopez, M. Human sit down position detection using data classification and dimensionality reduction. Adv. Sci. 2017, 2, 749–754. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.; Gupta, S.H.; Agarwal, A.; Choudhary, P.; Bansal, N.; Sen, S. A Wearable Multisensor Posture Detection System. In Proceedings of the 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 13–15 May 2020; pp. 818–822. [Google Scholar]
- Lim, C.; Basah, S.N.; Ali, M.A.; Fook, C.Y. Wearable Posture Identification System for Good Siting Position. J. Telecommun. Electron. Comput. Eng. 2018, 10, 135–140. [Google Scholar]
- Gupta, J.; Gupta, N.; Kumar, M.; Duggal, R.; Rodrigues, J.J. Collection and Classification of Human Posture Data using Wearable Sensors. In Proceedings of the 2021 IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 7–11 December 2021; pp. 1–6. [Google Scholar]
- Gao, L.; Zhang, G.; Yu, B.; Qiao, Z.; Wang, J. Wearable human motion posture capture and medical health monitoring based on wireless sensor networks. Measurement 2020, 166, 108252. [Google Scholar] [CrossRef]
- Fridriksdottir, E.; Bonomi, A.G. Accelerometer-Based Human Activity Recognition for Patient Monitoring Using a Deep Neural Network. Sensors 2020, 20, 6424. [Google Scholar] [CrossRef]
- Kale, H.; Mandke, P.; Mahajan, H.; Deshpande, V. Human posture recognition using artificial neural networks. In Proceedings of the 2018 IEEE 8th International Advance Computing Conference (IACC), Greater Noida, India, 14–15 December 2018; pp. 272–278. [Google Scholar]
- Ran, X.; Wang, C.; Xiao, Y.; Gao, X.; Zhu, Z.; Chen, B. A portable sitting posture monitoring system based on a pressure sensor array and machine learning. Sensors Actuators A Phys. 2021, 331, 112900. [Google Scholar] [CrossRef]
- Gjoreski, H.; Lustrek, M.; Gams, M. Accelerometer placement for posture recognition and fall detection. In Proceedings of the 2011 Seventh International Conference on Intelligent Environments, Nottingham, UK, 25–28 July 2011; pp. 47–54. [Google Scholar]
- Available online: https://shimmersensing.com/ (accessed on 10 December 2022).
- Aiello, G.; Certa, A.; Abusohyon, I.; Longo, F.; Padovano, A. Machine Learning Approach towards Real Time Assessment of Hand-Arm Vibration Risk. In Proceedings of the 17th IFAC Symposium on Information Control Problems in Manufacturing INCOM 2021, Budapest, Hungary, 7–9 June 2021; pp. 1187–1192. [Google Scholar]
- Yan, S.; Zhang, Y.; Qiu, S.; Liu, L. Research on the Efficiency of Working Status Based on Wearable Devices in Different Light Environments. Micromachines 2022, 13, 1410. [Google Scholar] [CrossRef]
- Sinha, V.K.K.; Patro, K.K.K.; Pławiak, P.; Prakash, A.J.J. Smartphone-Based Human Sitting Behaviors Recognition Using Inertial Sensor. Sensors 2021, 21, 6652. [Google Scholar] [CrossRef]
- Donisi, L.; Cesarelli, G.; Pisani, N.; Ponsiglione, A.M.; Ricciardi, C.; Capodaglio, E. Wearable Sensors and Artificial Intelligence for Physical Ergonomics: A Systematic Review of Literature. Diagnostics 2022, 12, 3048. [Google Scholar] [CrossRef]
- Rescio, G.; Leone, A.; Siciliano, P. Support Vector Machine for tri-axial accelerometer-based fall detector. In Proceedings of the 5th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI), Bari, Italy, 13–14 June 2013; pp. 25–30. [Google Scholar]
- Muthukrishnan, R.; Rohini, R. LASSO: A feature selection technique in predictive modeling for machine learning. In Proceedings of the 2016 IEEE international conference on advances in computer applications (ICACA), Tamilnadu, India, 24–24 October 2016; pp. 18–20. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn 2000, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Kumar, V.; Quinlan, J.R.; Ghosh, J.; Yang, Q.; Motoda, H.; McLachlan, G.J.; Ng, A.; Liu, B.; Yu, P.S.; et al. Top 10 algorithms in data mining. Knowl. Inf. Syst. 2008, 14, 1–37. [Google Scholar] [CrossRef] [Green Version]
- Aha, D.W.; Kibler, D.; Albert, M.K. Instance-based learning algorithms. Mach. Learn. 1991, 6, 37–66. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S. Efficient kNN classification with different numbers of nearest neighbors. IEEE Trans. Neural. Netw. Learn. Syst. 2018, 5, 1774–1785. [Google Scholar] [CrossRef] [PubMed]
- Bhat, P.C.; Prosper, H.B.; Sekmen, S.; Stewart, C. Optimizing event selection with the random grid search. Comput. Phys. Commun. 2018, 228, 245–257. [Google Scholar] [CrossRef]
- Available online: https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/ (accessed on 6 December 2022).
- Available online: https://www.odroid.co.uk/index.php?route=product/product&path=246_239&product_id=868 (accessed on 6 December 2022).
- Available online: https://www.lenovo.com/it/it/desktops-and-all-in-ones/thinkcentre/m-series-sff/ThinkCentre-M70s-Gen-3-Intel/p/LEN102C0010 (accessed on 6 December 2022).
- Available online: https://github.com/seemoo-lab/pyshimmer (accessed on 16 November 2022).
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Available online: https://www.manualslib.com/products/Ruideng-Um25c-10243666.html (accessed on 18 November 2022).
- Available online: https://play.google.com/store/apps/details?id=com.ruidenggoogle.bluetooth&hl=en_US&gl=US (accessed on 18 November 2022).
- Available online: https://apps.apple.com/us/app/um-meter/id1439150213 (accessed on 18 November 2022).
- Available online: https://up-shop.org/up-board-series.html (accessed on 12 December 2022).
Features | |
Dimensions | 51 mm × 34 mm × 14 mm |
Weight | 23.6 g |
Microcontroller | 24 MHz TI MSP 430 |
Tri-axial accelerometer | Kionix KXTC9-2050 |
Acceleration range | ±2 g |
Acceleration sensitivity | 660 mV/g (±20 mV) |
Wireless connectivity | Bluetooth (IEEE 802.15.1) |
Local storage | 8 GB microSD card |
Battery | Li-ion battery |
Sampling rate | selectable up to 1024 Hz |
Features | |
---|---|
Mean Absolute Value | |
Standard Deviation () | Where is mean of considered temporal window |
Variance (VAR) | Where is mean of considered temporal window |
Maximum | |
Minimum | |
Root Mean Square | |
Simple Squared Integral | |
Wavelet Entropy | |
Skewness | Where is mean and is the VAR of considered temporal window |
Kurtosis | Where is mean and is the VAR of considered temporal window |
Dynamic Acceleration Change | |
Static Acceleration Change | |
Log Energy Entropy |
Model | Parameters |
---|---|
RF | max_depth = 30, n_estimators = 25, criterion = gini |
DT | criterion = gini, max_depth=19 |
KNN | n_neighbors = 13, metric = minkowski, algorithms = auto, weights = distance |
Hardware | PC | Raspberry | Odroid |
---|---|---|---|
Model | Lenovo ThinkCentre M70s Tiny | Pi 4 Model B | N2+ |
CPU | Intel Core i5 | Quad Core ARM Cortex-A72 | Quad Core ARM Cortex-A73 |
RAM | 8 Gb | 8 Gb | 4 Gb |
Connectivity | Bluetooth, Wifi, Ethernet, USB | Bluetooth, Wifi, Ethernet, USB | Bluetooth with adapter, Wifi, Ethernet, USB |
Video output | HDMI | mini HDMI | HDMI |
Storage | 256 GB SSD | 32 GB SD-Card | 32 GB SD-Card |
Dimensions | 340 × 298 × 92.5 mm | 88 × 58 × 19.5 mm | 90 × 90 × 17 mm |
Weight | 5200 g | 46 g | 200 g |
Energy consumption | 180–200 W | 2–6 W | 2.2–6.2 W |
Operating Voltage | AC 220 V/DC 19 V | AC 220 V/DC 5 V | AC 220 V/DC 12 V |
Operating system | Windows 10 | Raspbian | Ubuntu |
Cost | 789 | 200 | 199 |
Model | Acc | Pr | Re | F1 |
---|---|---|---|---|
RF | 0.987 | 0.986 | 0.986 | 0.977 |
DT | 0.971 | 0.973 | 0.971 | 0.972 |
KNN | 0.943 | 0.942 | 0.943 | 0.942 |
Model | PC | Raspberry Pi 4 | Odroid N2+ |
---|---|---|---|
RF | 0.017 | 0.044 | 0.055 |
DT | 0.002 | 0.005 | 0.008 |
KNN | 0.004 | 0.012 | 0.015 |
Model | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|
RF | 0.962 | 0.943 | 0.941 | 0.942 |
Model | PC | Raspberry Pi 4 | Odroid N2+ | |||
---|---|---|---|---|---|---|
CPU | RAM | CPU | RAM | CPU | RAM | |
RF | 0.332 | 0.153 | 0.324 | 0.096 | 0.312 | 0.186 |
DT | 0.147 | 0.144 | 0.237 | 0.120 | 0.265 | 0.264 |
KNN | 0.150 | 0.235 | 0.258 | 0.268 | 0.289 | 0.279 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leone, A.; Rescio, G.; Caroppo, A.; Siciliano, P.; Manni, A. Human Postures Recognition by Accelerometer Sensor and ML Architecture Integrated in Embedded Platforms: Benchmarking and Performance Evaluation. Sensors 2023, 23, 1039. https://doi.org/10.3390/s23021039
Leone A, Rescio G, Caroppo A, Siciliano P, Manni A. Human Postures Recognition by Accelerometer Sensor and ML Architecture Integrated in Embedded Platforms: Benchmarking and Performance Evaluation. Sensors. 2023; 23(2):1039. https://doi.org/10.3390/s23021039
Chicago/Turabian StyleLeone, Alessandro, Gabriele Rescio, Andrea Caroppo, Pietro Siciliano, and Andrea Manni. 2023. "Human Postures Recognition by Accelerometer Sensor and ML Architecture Integrated in Embedded Platforms: Benchmarking and Performance Evaluation" Sensors 23, no. 2: 1039. https://doi.org/10.3390/s23021039
APA StyleLeone, A., Rescio, G., Caroppo, A., Siciliano, P., & Manni, A. (2023). Human Postures Recognition by Accelerometer Sensor and ML Architecture Integrated in Embedded Platforms: Benchmarking and Performance Evaluation. Sensors, 23(2), 1039. https://doi.org/10.3390/s23021039