Visible Near-Infrared Photodetection Based on Ta2NiSe5/WSe2 van der Waals Heterostructures
Abstract
:1. Introduction
2. Device Design and Fabrication
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, H.; Kim, D.H. Perovskite-based photodetectors: Materials and devices. Chem. Soc. Rev. 2017, 46, 5204–5236. [Google Scholar] [CrossRef]
- Buscema, M.; Island, J.O.; Groenendijk, D.J.; Blanter, S.I.; Steele, G.A.; van der Zant, H.S.; Castellanos-Gomez, A. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem. Soc. Rev. 2015, 44, 3691–3718. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Zhao, T.; Zeng, H. 2D Material-Based Photodetectors for Infrared Imaging. Small Sci. 2021, 2, 2100051. [Google Scholar] [CrossRef]
- Wang, B.; Zhong, S.P.; Zhang, Z.B.; Zheng, Z.Q.; Zhang, Y.P.; Zhang, H. Broadband photodetectors based on 2D group IVA metal chalcogenides semiconductors. Appl. Mater. Today 2019, 15, 115–138. [Google Scholar] [CrossRef]
- Sun, B.; Shi, T.; Liu, Z.; Wu, Y.; Zhou, J.; Liao, G. Large-area flexible photodetector based on atomically thin MoS2/graphene film. Mater. Des. 2018, 154, 1–7. [Google Scholar] [CrossRef]
- Margalit, N.; Xiang, C.; Bowers, S.M.; Bjorlin, A.; Blum, R.; Bowers, J.E. Perspective on the future of silicon photonics and electronics. Appl. Phys. Lett. 2021, 118, 220501. [Google Scholar] [CrossRef]
- Wu, H.; Sun, Y.; Lin, D.; Zhang, R.; Zhang, C.; Pan, W. GaN Nanofibers based on Electrospinning: Facile Synthesis, Controlled Assembly, Precise Doping, and Application as High Performance UV Photodetector. Adv. Mater. 2009, 21, 227–231. [Google Scholar] [CrossRef]
- Li, D.; Sun, X.; Song, H.; Li, Z.; Chen, Y.; Jiang, H.; Miao, G. Realization of a high-performance GaN UV detector by nanoplasmonic enhancement. Adv. Mater. 2012, 24, 845–849. [Google Scholar] [CrossRef]
- Monroy, E.; Omnes, F.; Calle, F. Wide-bandgap semiconductor ultraviolet photodetectors. Semicond. Sci. Technol. 2003, 18, R33–R51. [Google Scholar] [CrossRef]
- Long, M.; Wang, P.; Fang, H.; Hu, W. Progress, Challenges, and Opportunities for 2D Material Based Photodetectors. Adv. Funct. Mater. 2018, 29, 1803807. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, Y.; You, C.; Liu, B.; Yang, Y.; Li, H.; Cui, A.; Liu, D.; Yan, H. Two dimensional materials based photodetectors. Infrared Phys. Technol. 2018, 88, 149–173. [Google Scholar] [CrossRef]
- Fang, J.; Zhou, Z.; Xiao, M.; Lou, Z.; Wei, Z.; Shen, G. Recent advances in low-dimensional semiconductor nanomaterials and their applications in high-performance photodetectors. InfoMat 2019, 2, 291–317. [Google Scholar] [CrossRef]
- Fang, Y.; Armin, A.; Meredith, P.; Huang, J. Accurate characterization of next-generation thin-film photodetectors. Nat. Photonics 2018, 13, 1–4. [Google Scholar] [CrossRef]
- Yin, J.; Tan, Z.; Hong, H.; Wu, J.; Yuan, H.; Liu, Y.; Chen, C.; Tan, C.; Yao, F.; Li, T.; et al. Ultrafast and highly sensitive infrared photodetectors based on two-dimensional oxyselenide crystals. Nat. Commun. 2018, 9, 3311. [Google Scholar] [CrossRef]
- Wang, J.; Han, J.; Chen, X.; Wang, X. Design strategies for two-dimensional material photodetectors to enhance device performance. InfoMat 2019, 1, 33–53. [Google Scholar] [CrossRef]
- Abderrahmane, A.; Woo, C.; Ko, P.-J. Low Power Consumption Gate-Tunable WSe2/SnSe2 van der Waals Tunnel Field-Effect Transistor. Electronics 2022, 11, 833. [Google Scholar] [CrossRef]
- Shi, Z.; Zhang, H.; Khan, K.; Cao, R.; Zhang, Y.; Ma, C.; Tareen, A.K.; Jiang, Y.; Jin, M.; Zhang, H. Two-dimensional materials toward Terahertz optoelectronic device applications. J. Photochem. Photobiol. C Photochem. Rev. 2022, 51, 100473. [Google Scholar] [CrossRef]
- Xu, M.; Liang, T.; Shi, M.; Chen, H. Graphene-like two-dimensional materials. Chem. Rev. 2013, 113, 3766–3798. [Google Scholar] [CrossRef]
- Yin, Z.Y.; Li, H.; Li, H.; Jiang, L.; Shi, Y.M.; Sun, Y.H.; Lu, G.; Zhang, Q.; Chen, X.D.; Zhang, H. Single-Layer MoS2 Phototransistors. ACS Nano 2012, 6, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Schneider, D.S.; Grundmann, A.; Bablich, A.; Passi, V.; Kataria, S.; Kalisch, H.; Heuken, M.; Vescan, A.; Neumaier, D.; Lemme, M.C. Highly Responsive Flexible Photodetectors Based on MOVPE Grown Uniform Few-Layer MoS2. ACS Photonics 2020, 7, 1388–1395. [Google Scholar] [CrossRef]
- Choi, W.; Cho, M.Y.; Konar, A.; Lee, J.H.; Cha, G.B.; Hong, S.C.; Kim, S.; Kim, J.; Jena, D.; Joo, J.; et al. High-detectivity multilayer MoS(2) phototransistors with spectral response from ultraviolet to infrared. Adv. Mater. 2012, 24, 5832–5836. [Google Scholar] [CrossRef]
- Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Zhang, W.; Demarteau, M.; Hoffmann, A.; Dubey, M.; Roelofs, A. Tunable transport gap in phosphorene. Nano Lett. 2014, 14, 5733–5739. [Google Scholar] [CrossRef]
- Avsar, A.; Tan, J.Y.; Kurpas, M.; Gmitra, M.; Watanabe, K.; Taniguchi, T.; Fabian, J.; Özyilmaz, B. Gate-tunable black phosphorus spin valve with nanosecond spin lifetimes. Nat. Phys. 2017, 13, 888–893. [Google Scholar] [CrossRef]
- Chen, X.; Wu, Y.; Wu, Z.; Han, Y.; Xu, S.; Wang, L.; Ye, W.; Han, T.; He, Y.; Cai, Y.; et al. High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nat. Commun. 2015, 6, 7315. [Google Scholar] [CrossRef]
- Xu, Y.; Shi, X.; Zhang, Y.; Zhang, H.; Zhang, Q.; Huang, Z.; Xu, X.; Guo, J.; Zhang, H.; Sun, L.; et al. Epitaxial nucleation and lateral growth of high-crystalline black phosphorus films on silicon. Nat. Commun. 2020, 11, 1330. [Google Scholar] [CrossRef]
- Li, H.; Zhang, K.; Li, X.; Liu, B.; Li, L.; Mei, Z.; Chen, T.; Liu, Q.; Yu, W.; Yuan, J.; et al. Two-dimensional (2D) α-In2Se3/Ta2NiSe5 heterojunction photodetector with high sensitivity and fast response in a wide spectral range. Mater. Des. 2023, 227, 111799. [Google Scholar] [CrossRef]
- Guo, T.; Sa, Z.; Wei, P.; Jian, Y.; Chen, X.; Chen, Z.; Avila, J.; Dudin, P.; Yang, Z.-x.; Song, X.; et al. High-performance flexible broadband photodetectors enabled by 2D Ta2NiSe5 nanosheets. 2D Mater. 2023, 10, 025004. [Google Scholar] [CrossRef]
- Wakisaka, Y.; Sudayama, T.; Takubo, K.; Mizokawa, T.; Arita, M.; Namatame, H.; Taniguchi, M.; Katayama, N.; Nohara, M.; Takagi, H. Excitonic insulator state in Ta2NiSe5 probed by photoemission spectroscopy. Phys. Rev. Lett. 2009, 103, 026402. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.F.; Kono, H.; Larkin, T.I.; Rost, A.W.; Takayama, T.; Boris, A.V.; Keimer, B.; Takagi, H. Zero-gap semiconductor to excitonic insulator transition in Ta2NiSe5. Nat. Commun. 2017, 8, 14408. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wang, W.; Gan, L.; Zhou, N.; Zhu, X.; Zhang, Q.; Li, H.; Tian, M.; Zhai, T. Ternary Ta2NiSe5 Flakes for a High-Performance Infrared Photodetector. Adv. Funct. Mater. 2016, 26, 8281–8289. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, W.; Li, J.; Chen, J.; Dong, Z.; Xie, L.; Li, C.; Shi, X.; Guo, W.; Lin, S.; et al. Ultra-broadband photodetection based on two-dimensional layered Ta2NiSe5 with strong anisotropy and high responsivity. Mater. Des. 2021, 208, 109894. [Google Scholar] [CrossRef]
- Qiao, J.; Feng, F.; Wang, Z.; Shen, M.; Zhang, G.; Yuan, X.; Somekh, M.G. Highly In-Plane Anisotropic Two-Dimensional Ternary Ta2NiSe5 for Polarization-Sensitive Photodetectors. ACS Appl. Mater. Interfaces 2021, 13, 17948–17956. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Wang, Y.E.; Zeng, L.H.; Jia, C.; Wu, E.P.; Xu, T.T.; Shi, Z.F.; Tian, Y.T.; Li, X.J.; Tsang, Y.H. Design of 2D Layered PtSe2 Heterojunction for the High-Performance, Room-Temperature, Broadband, Infrared Photodetector. ACS Photonics 2018, 5, 3820–3827. [Google Scholar] [CrossRef]
- Wu, E.; Wu, D.; Jia, C.; Wang, Y.; Yuan, H.; Zeng, L.; Xu, T.; Shi, Z.; Tian, Y.; Li, X. In Situ Fabrication of 2D WS2/Si Type-II Heterojunction for Self-Powered Broadband Photodetector with Response up to Mid-Infrared. ACS Photonics 2019, 6, 565–572. [Google Scholar] [CrossRef]
- Chang, K.E.; Kim, C.; Yoo, T.J.; Kwon, M.G.; Heo, S.; Kim, S.Y.; Hyun, Y.; Yoo, J.I.; Ko, H.C.; Lee, B.H. High-Responsivity Near-Infrared Photodetector Using Gate-Modulated Graphene/Germanium Schottky Junction. Adv. Electron. Mater. 2019, 5, 1800957. [Google Scholar] [CrossRef]
- Yan, J.; Xiao, R.C.; Luo, X.; Lv, H.Y.; Zhang, R.R.; Sun, Y.; Tong, P.; Lu, W.J.; Song, W.H.; Zhu, X.B.; et al. Strong Electron-Phonon Coupling in the Excitonic Insulator Ta2NiSe5. Inorg. Chem. 2019, 58, 9036–9042. [Google Scholar] [CrossRef]
- Li, H.; Wu, J.M.T.; Yin, Z.Y.; Zhang, H. Preparation and Applications of Mechanically Exfoliated Single-Layer and Multi layer MoS2 and WSe2 Nanosheets. Acc. Chem. Res. 2014, 47, 1067–1075. [Google Scholar] [CrossRef]
- Mohammed, A.; Nakamura, H.; Wochner, P.; Ibrahimkutty, S.; Schulz, A.; Muller, K.; Starke, U.; Stuhlhofer, B.; Cristiani, G.; Logvenov, G.; et al. Pulsed laser deposition for the synthesis of monolayer WSe2. Appl. Phys. Lett. 2017, 111, 5. [Google Scholar] [CrossRef]
- Luo, H.; Wang, B.; Wang, E.; Wang, X.; Sun, Y.; Li, Q.; Fan, S.; Cheng, C.; Liu, K. Phase-transition modulated, high-performance dual-mode photodetectors based on WSe2/VO2 heterojunctions. Appl. Phys. Rev. 2019, 6, 041407. [Google Scholar] [CrossRef]
- Kang, J.; Tongay, S.; Zhou, J.; Li, J.; Wu, J. Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 2013, 102, 012111. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhang, T.; Yao, J.; Zhang, Y.; Xu, J.; Yang, G. Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices. Nanotechnology 2016, 27, 225501. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Carvalho, A.; Liu, H.; Lim, S.X.; Castro Neto, A.H.; Sow, C.H. Hybrid Bilayer WSe2 -CH3 NH3 PbI3 Organolead Halide Perovskite as a High-Performance Photodetector. Angew. Chem. Int. Ed. Engl. 2016, 55, 11945–11949. [Google Scholar] [CrossRef]
- Qiao, J.; Feng, F.; Song, S.; Wang, T.; Shen, M.; Zhang, G.; Yuan, X.; Somekh, M.G. Perovskite Quantum Dot-Ta2NiSe5 Mixed-Dimensional Van Der Waals Heterostructures for High-Performance Near-Infrared Photodetection. Adv. Funct. Mater. 2021, 32, 2110706. [Google Scholar] [CrossRef]
- Schlaf, R.; Lang, O.; Pettenkofer, C.; Jaegermann, W. Band lineup of layered semiconductor heterointerfaces prepared by van der Waals epitaxy: Charge transfer correction term for the electron affinity rule. J. Appl. Phys. 1999, 85, 2732–2753. [Google Scholar] [CrossRef]
- Wu, Z.; Jie, W.; Yang, Z.; Hao, J. Hybrid heterostructures and devices based on two-dimensional layers and wide bandgap materials. Mater. Today Nano 2020, 12, 100092. [Google Scholar] [CrossRef]
- Yang, J.; Yu, W.; Pan, Z.; Yu, Q.; Yin, Q.; Guo, L.; Zhao, Y.; Sun, T.; Bao, Q.; Zhang, K. Ultra-Broadband Flexible Photodetector Based on Topological Crystalline Insulator SnTe with High Responsivity. Small 2018, 14, e1802598. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Liu, C.; Zhang, S.; Shi, C.; Chen, Z.; Yu, X.; Chen, X. Ultrafast visible-infrared photodetector based on the SnSe2/Bi2Se3 heterostructure. Opt. Lett. 2022, 47, 4977–4980. [Google Scholar] [CrossRef]
- Lu, X.W.; Sun, L.; Jiang, P.; Bao, X.H. Progress of Photodetectors Based on the Photothermoelectric Effect. Adv. Mater. 2019, 31, 26. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Huang, L.; Li, J.; Dong, Z.; Yu, Q.; Lei, T.; Chen, C.; Yang, L.; Dai, Y.; Zhang, J.; et al. Two-dimensional Ta2NiSe5/GaSe van der Waals heterojunction for ultrasensitive visible and near-infrared dual-band photodetector. Appl. Phys. Lett. 2022, 120, 261101. [Google Scholar] [CrossRef]
- Guo, T.; Song, X.; Wei, P.; Li, J.; Gao, Y.; Cheng, Z.; Zhou, W.; Gu, Y.; Chen, X.; Zeng, H.; et al. High-Gain MoS2/Ta2NiSe5 Heterojunction Photodetectors with Charge Transfer and Suppressing Dark Current. ACS Appl. Mater. Interfaces 2022, 14, 56384–56394. [Google Scholar] [CrossRef] [PubMed]
- Kapatel, S.; Sumesh, C.K. Atomically thin WSe2 nanosheets for fabrication of high-performance p-Si/WSe2 heterostructure. Opt. Mater. 2022, 129, 112537. [Google Scholar] [CrossRef]
- Gao, W.; Zhang, F.; Zheng, Z.; Li, J. Unique and Tunable Photodetecting Performance for Two-Dimensional Layered MoSe2/WSe2 p–n Junction on the 4H-SiC Substrate. ACS Appl. Mater. Interfaces 2019, 11, 19277–19285. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.; Lan, C.; Li, F.; Wang, W.; Yip, S.; Meng, Y.; Wang, F.; Lai, Z.; Liu, C.; Ho, J.C. Van der Waals PdSe2/WS2 Heterostructures for Robust High-Performance Broadband Photodetection from Visible to Infrared Optical Communication Band. Adv. Opt. Mater. 2021, 9, 2001991. [Google Scholar] [CrossRef]
Materials | Wavelength Range (nm) | Dark Current | Rise/Decay Time | On/Off | Reference |
---|---|---|---|---|---|
Ta2NiSe5/WSe2 | 638/1550 | ~3.6 pA | 278/283 μs | ~104 | This work |
Ta2NiSe5/GaSe | 520/1550 | ~4 pA | 340/32 ms | 5 × 103 | [50] |
Ta2NiSe5/MoS2 | 532/1064 | ~11 pA | 7.4/31.1 s | 1.9 × 102 | [51] |
WSe2/Si | 670 | - | 75/125 ms | 3.2 | [52] |
WSe2/MoSe2 | 532 | ~0.078 nA | 4.3/22.6 ms | ~103 | [53] |
PdSe2/Si | 532/1550 | ~10 pA | 49/90 ms | ~103 | [54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, P.; Zhang, S.; Zhang, L.; Yang, J.; Shi, C.; Han, L.; Tang, W.; Zhu, B. Visible Near-Infrared Photodetection Based on Ta2NiSe5/WSe2 van der Waals Heterostructures. Sensors 2023, 23, 4385. https://doi.org/10.3390/s23094385
Xiao P, Zhang S, Zhang L, Yang J, Shi C, Han L, Tang W, Zhu B. Visible Near-Infrared Photodetection Based on Ta2NiSe5/WSe2 van der Waals Heterostructures. Sensors. 2023; 23(9):4385. https://doi.org/10.3390/s23094385
Chicago/Turabian StyleXiao, Pan, Shi Zhang, Libo Zhang, Jialiang Yang, Chaofan Shi, Li Han, Weiwei Tang, and Bairen Zhu. 2023. "Visible Near-Infrared Photodetection Based on Ta2NiSe5/WSe2 van der Waals Heterostructures" Sensors 23, no. 9: 4385. https://doi.org/10.3390/s23094385
APA StyleXiao, P., Zhang, S., Zhang, L., Yang, J., Shi, C., Han, L., Tang, W., & Zhu, B. (2023). Visible Near-Infrared Photodetection Based on Ta2NiSe5/WSe2 van der Waals Heterostructures. Sensors, 23(9), 4385. https://doi.org/10.3390/s23094385