A Novel Combined Method for Measuring the Three-Dimensional Rotational Angle of a Spherical Joint
Abstract
:1. Introduction
2. Measurement Plan Design
2.1. Sensor Placement Location
2.2. Spherical Groove Design
3. RBF Neural Network
4. Experiment
4.1. Experimental Equipment
4.2. Experimental Data Analysis
5. Analysis of Uncertainty
5.1. Uncertainty Introduced by Sensor Measurement Repeatability
5.2. Uncertainty Introduced by Drift
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Palpacelli, M.C.; Carbonari, L.; Palmieri, G. Details on the Design of a Lockable Spherical Joint for Robotic Applications. J. Intell. Robot. Syst. 2016, 81, 169–179. [Google Scholar] [CrossRef]
- Guckert, M.L.; Naish, M.D. A Compact 3 Degree of Freedom Spherical Joint. ASME J. Mech. Robot. August 2011, 3, 264–278. [Google Scholar] [CrossRef]
- Jäntsch, M.; Schmaler, C.; Wittmeier, S.; Dalamagkidis, K.; Knoll, A. A Scalable Joint-Space Controller for Musculoskeletal Robots with Spherical Joints. In Proceedings of the IEEE International Conference on Robotics & Biomimetics, Karon Beach, Thailand, 7–11 December 2011; pp. 2211–2216. [Google Scholar]
- Gao, X.; Zhang, S.; Deng, J.; Liu, Y. Development of a Small Two-Dimensional Robotic Spherical Joint Using a Bonded-Type Piezoelectric Actuator. IEEE Trans. Ind. Electron. 2021, 68, 724–733. [Google Scholar] [CrossRef]
- Folgheraiter, M.; Yessirkepov, S.; Yessaly, A. An Actuated Spherical Joint for Humanoid Robotics Applications. In Proceedings of the IEEE International Conference on Cybernetics and Intelligent Systems, IEEE Conference on Robotics, Automation and Mechatronics, Bangkok, Thailand, 18–20 November 2019; pp. 571–576. [Google Scholar]
- Wang, W.; Zhang, M.; Zhu, Y.; Tang, C. A review on the measurement methods of multi-dimensional turning Angle of ball hinge. J. Electron. Meas. Instrum. 2017, 31, 1–8. [Google Scholar]
- Khalid, A.; Mekid, S. Intelligent spherical joint based tri-actuated spatial parallel manipulator for precision applications. Robot. Comput. Integr. Manuf. 2018, 54, 173–184. [Google Scholar] [CrossRef]
- Yun, H.; Jeon, H.; Yang, S.; Jun, M.B. Calibration of Industrial Robots with Spherical Joint using Single Wire Encoder. Manuf. Lett. 2022, 33, 46–50. [Google Scholar] [CrossRef]
- Wright, S.E.; Mahoney, A.W.; Popek, K.M.; Abbott, J.J. The Spherical-Actuator-Magnet Manipulator: A Permanent-Magnet Robotic End-Effector. IEEE Trans. Robot. 2017, 33, 1013–1024. [Google Scholar] [CrossRef]
- Bai, S.; Li, X.; Angeles, J. A review of spherical motion generation using either spherical parallel manipulators or spherical motors. Mech. Mach. Theory 2019, 140, 377–388. [Google Scholar] [CrossRef]
- Mashimo, T.; Awaga, K.; Toyama, S. Development of a Spherical Ultrasonic Motor with an Attitude Sensing System using Optical Fibers. In Proceedings of the IEEE International Conference on Robotics and Automation, Rome, Italy, 10–14 April 2007; pp. 4466–4471. [Google Scholar]
- Bai, K.; Li, K.; Lu, J. A magnetic flux model based method for detecting multi-DOF motion of a permanent magnet spherical motor. Mechatronics 2016, 39, 217–225. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, Y.; Xie, B.; Wang, Y.; Guo, X.; Sun, H. Position Detection Method of Piezoelectric Driven Spherical Motor Based on Laser Detection. Micromachines 2022, 13, 662. [Google Scholar] [CrossRef]
- Wu, T.; Guo, X.; Wang, Q.; Li, J.; Gong, N. Real-time attitude detection method of permanent magnet spherical motor based on optical sensor. Sens. Microsyst. 2021, 40, 5. [Google Scholar]
- Gofuku, A.; Yokomitsu, N.; Yano, T.; Kasashima, N. A Rotor Posture Measurement System by Analyzing Sensed Magnetic Field from Arrayed Hall Sensors. In Proceedings of the 2019 12th International Symposium on Linear Drives for Industry Applications, Neuchatel, Switzerland, 1–3 July 2019; pp. 1–5. [Google Scholar]
- Rong, Y.; Wang, Q.; Lu, S.; Li, G.; Lu, Y.; Xu, J. Improving attitude detection performance for spherical motors using a MEMS inertial measurement sensor. IET Electr. Power Appl. 2019, 25, 198–205. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, C.; Mao, Y.; Bai, K. A transfer alignment method for inertial attitude correction of spherical motor on moving base. Meas. Sci. Technol. 2021, 32, 105023. [Google Scholar]
- Li, M.; Kok-Meng, L.; Hanson, E. Sensor Fusion Based on Embedded Measurements for Real-Time Three-DOF Orientation Motion Estimation of a Weight-Compensated Spherical Motor. IEEE Trans. Instrum. Meas. 2022, 71, 9508009. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, M.J.; Moon, J.H.; Kang, D.W. A Study on AHRS Position Sensing Accuracy for Control of the Traction Spherical Motor. Trans. Korean Inst. Electr. Eng. 2020, 69, 225–228. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Q.; Li, G.; Zhou, R.; Wen, Y.; Ju, L.; Zhou, S. Sensorless Posture Detection of Reluctance Spherical Motor Based on Mutual Inductance Voltage. Appl. Sci. 2021, 11, 3515. [Google Scholar] [CrossRef]
- Yang, S.; Xu, Y.; Xu, Y.; Ma, T.; Wang, H.; Hou, J.; Liu, D.; Shen, H. A Novel Method for Detecting the Two-Degrees-of-Freedom Angular Displacement of a Spherical Pair, Based on a Capacitive Sensor. Sensors 2022, 22, 3437. [Google Scholar] [CrossRef]
- Yang, L.; Hu, P.; Ma, K.; Zhang, J.; Dang, X.; Liu, S. A new method for measuring 3D rotation angle of spherical joint. Measurement 2022, 190, 110661–110675. [Google Scholar] [CrossRef]
- Hu, P.; Cheng, S.; Liao, P.; Liu, W.; Zhu, Q. Intelligent ball hinge optimization design and accuracy improvement. Chin. J. Sci. Instrum. 2018, 39, 132–140. [Google Scholar]
- Ma, K.; Yang, Q.; Zhang, J.; Dang, X.; Hu, P. A New 2D displacement measurement method based on an eddy current sensor and absolute encoding. Machines 2022, 10, 1077. [Google Scholar] [CrossRef]
- Leong, T.K.; Saratchandran, P.; Sundararajan, N. Real-time performance evaluation of the minimal radial basis function network for identification of time varying nonlinear systems. Comput. Electr. Eng. 2002, 28, 103–117. [Google Scholar] [CrossRef]
- Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H. State-of-the-art in artificial neural network applications: A survey. Heliyon 2018, 10, 112–153. [Google Scholar] [CrossRef] [PubMed]
- Agatonovic-Kustrin, S.; Beresford, R. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J. Pharm. Biomed. Anal. 2000, 22, 717–727. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, A.; Bisoy, S.K.; Das, A. A Survey on PSO Based Meta-Heuristic Scheduling Mechanism in Cloud Computing Environment. J. King Saud Univ. Comput. Inf. Sci. 2021, 34, 4888–4901. [Google Scholar] [CrossRef]
- Rezaee-Jordehi, A. Enhanced leader PSO (ELPSO): A new PSO variant for solving global optimisation problems. Appl. Soft Comput. J. 2015, 26, 401–417. [Google Scholar] [CrossRef]
- García-Gonzalo, E.; Fernández-Martínez, J.L. A Brief Historical Review of Particle Swarm Optimization (PSO). J. Bioinform. Intell. Control. 2012, 1, 3–16. [Google Scholar] [CrossRef]
- Imran, M.; Hashim, R.; Khalid, N.E. An Overview of Particle Swarm Optimization Variants. Procedia Eng. 2013, 53, 491–496. [Google Scholar] [CrossRef]
- Fei, Y.; Chen, X.; Qin, L.; Song, M.; Xv, L.; Huang, Q. Error Theory and Data Analysis, 7th ed.; China Machine Press: Beijing, China, 2015; pp. 83–89. [Google Scholar]
α | β | γ | ||||
---|---|---|---|---|---|---|
ME | RMSE | ME | RMSE | ME | RMSE | |
Q1 | 50.4″ | 1′22.8″ | 1′19.2″ | 2′9.6″ | 22′15.6″ | 28′44.4″ |
Q2 | 61.2″ | 1′19.2″ | 1′22.8″ | 2′20.4″ | 23′31.2″ | 29′38.4″ |
Q3 | 50.4″ | 1′8.4″ | 1′26.4″ | 2′34.8″ | 23′24″ | 29′49.2″ |
Q4 | 46.8″ | 1′4.8″ | 1′26.4″ | 2′31.2″ | 23′34.8″ | 29′52.8″ |
Q5 | 46.8″ | 1′1.2″ | 1′26.4″ | 2′24″ | 23′38.4″ | 30′7.2″ |
Q6 | 43.2″ | 57.6″ | 1′19.2″ | 2′20.4″ | 22′44.4″ | 28′37.2″ |
Q7 | 54″ | 1′12″ | 1′15.6″ | 1′48″ | 23′13.2″ | 29′24″ |
Q8 | 54″ | 1′8.4″ | 1′8.4″ | 1′40.8″ | 21′46.8″ | 27′32.4″ |
Q9 | 54″ | 1′12″ | 1′15.6″ | 1′58.8″ | 22′26.4″ | 28′8.4″ |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
α/° | 4.9264 | 4.9364 | 4.9344 | 4.9264 | 4.9625 | 4.9731 | 4.9311 | 4.9645 | 4.9564 | 4.9820 |
β/° | 4.9689 | 4.9785 | 4.9805 | 4.9689 | 4.9536 | 4.9566 | 4.9720 | 4.9431 | 4.9513 | 4.9852 |
γ/° | 4.3970 | 4.5035 | 4.5538 | 4.3970 | 4.557 | 4.6025 | 4.4078 | 4.5124 | 4.6031 | 4.3395 |
Rotation Angle | /° | /° | |
---|---|---|---|
α | 4.94932 | 0.006549 | 9 |
β | 4.96586 | 0.004435 | |
γ | 4.48736 | 0.030254 |
Rotation Angle | /° | /° | |
---|---|---|---|
α | 0.0038 | 0.00219 | 5305 |
β | 0.0133 | 0.00768 | |
γ | 0.0394 | 0.02275 |
Rotation Angle | ||
---|---|---|
α | 0.006905 | 11 |
β | 0.008868 | 141 |
γ | 0.037853 | 22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Ouyang, K.; Yang, L.; Fu, R.; Hu, P. A Novel Combined Method for Measuring the Three-Dimensional Rotational Angle of a Spherical Joint. Sensors 2024, 24, 90. https://doi.org/10.3390/s24010090
Yang Q, Ouyang K, Yang L, Fu R, Hu P. A Novel Combined Method for Measuring the Three-Dimensional Rotational Angle of a Spherical Joint. Sensors. 2024; 24(1):90. https://doi.org/10.3390/s24010090
Chicago/Turabian StyleYang, Qianyun, Kai Ouyang, Long Yang, Rao Fu, and Penghao Hu. 2024. "A Novel Combined Method for Measuring the Three-Dimensional Rotational Angle of a Spherical Joint" Sensors 24, no. 1: 90. https://doi.org/10.3390/s24010090