A Novel Sparse Array Configuration for Direction of Arrival Estimation with Increased Uniform Degrees of Freedom and Reduced Mutual Coupling
Abstract
:1. Introduction
2. Preliminaries
2.1. Signal Model
2.2. Difference Coarray
2.3. DOA Estimation
2.4. Mutual Coupling
3. Proposed Array Configurations
3.1. GAMSNA-I
3.2. GAMSNA-II
4. Numerical Simulations
4.1. uDOFs
4.2. Coupling Leakage
4.3. DOA Estimation Performance
4.3.1. MUSIC Spectrum
4.3.2. Root Mean Square Error Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Proof of Proposition 1
Appendix B. Proof of Proposition 2
References
- Chen, Y.; Yang, M.; Li, J.; Zhang, X. A Nested–Nested Sparse Array Specially for Monostatic Colocated MIMO Radar with Increased Degree of Freedom. Sensors 2023, 23, 9230. [Google Scholar] [CrossRef]
- Liu, W.; Haardt, M.; Greco, M.S.; Mecklenbräuker, C.F.; Willett, P. Twenty-Five Years of Sensor Array and Multichannel Signal Processing: A review of progress to date and potential research directions. IEEE Signal Process. Mag. 2023, 40, 80–91. [Google Scholar] [CrossRef]
- Li, J.; Li, P.; Li, P.; Tang, L.; Zhang, X.l.; Wu, Q. Self-position awareness based on cascade direct localization over multiple source data. IEEE Trans. Intell. Transp. Syst. 2022, 25, 796–804. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, H.; Hu, G. Further Results on the Degrees of Freedom for Coprime MIMO Systems. IEEE Commun. Lett. 2023, 27, 3335–3339. [Google Scholar] [CrossRef]
- Shi, J.; Hu, G.; Zong, B.; Chen, M. DOA estimation using multipath echo power for MIMO radar in low-grazing angle. IEEE Sensors J. 2016, 16, 6087–6094. [Google Scholar] [CrossRef]
- Fang, Y.; Zhu, S.; Gao, Y.; Lan, L.; Zeng, C.; Liu, Z. Direction-of-arrival estimation of coherent signals for uniform linear antenna arrays with mutual coupling in unknown nonuniform noise. IEEE Trans. Veh. Technol. 2021, 71, 1656–1668. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; Xie, J.; Trinkle, M.; Ng, B.W.H. DOA estimation under mutual coupling of uniform linear arrays using sparse reconstruction. IEEE Wirel. Commun. Lett. 2019, 8, 1004–1007. [Google Scholar] [CrossRef]
- Li, B.; Zhang, X.; Li, J.; Ma, P. DOA estimation of non-circular source for large uniform linear array with a single snapshot: Extended DFT method. IEEE Commun. Lett. 2021, 25, 3843–3847. [Google Scholar] [CrossRef]
- Wu, R.; Wang, M.; Zhang, Z. Computationally efficient DOA and carrier estimation for coherent signal using single snapshot and its time-delay replications. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 2469–2480. [Google Scholar] [CrossRef]
- Patwari, A. Sparse Linear Antenna Arrays: A Review. In Antenna Systems; IntechOpen: London, UK, 2022. [Google Scholar]
- Moffet, A. Minimum-redundancy linear arrays. IEEE Trans. Antennas Propag. 1968, 16, 142–149. [Google Scholar] [CrossRef]
- Pal, P.; Vaidyanathan, P.P. Nested arrays: A novel approach to array processing with enhanced degrees of freedom. IEEE Trans. Signal Process. 2010, 58, 4167–4181. [Google Scholar] [CrossRef]
- Vaidyanathan, P.P.; Pal, P. Sparse sensing with co-prime samplers and arrays. IEEE Trans. Signal Process. 2010, 59, 573–586. [Google Scholar] [CrossRef]
- Qin, S.; Zhang, Y.D.; Amin, M.G. Generalized coprime array configurations for direction-of-arrival estimation. IEEE Trans. Signal Process. 2015, 63, 1377–1390. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, G.; Zhang, F.; Zhou, H. Enhanced CACIS configuration for direction of arrival estimation. Electron. Lett. 2022, 58, 737–739. [Google Scholar] [CrossRef]
- Raza, A.; Liu, W.; Shen, Q. Thinned coprime array for second-order difference co-array generation with reduced mutual coupling. IEEE Trans. Signal Process. 2019, 67, 2052–2065. [Google Scholar] [CrossRef]
- Zheng, W.; Zhang, X.; Wang, Y.; Shen, J. Padded coprime arrays for improved DOA estimation: Exploiting hole representation and filling strategies. IEEE Trans. Signal Process. 2020, 68, 4597–4611. [Google Scholar] [CrossRef]
- Patra, R.K.; Dhar, A.S. A Novel k-times Extended Coprime Array for DOA Estimation With Increased Degrees of Freedom. IEEE Signal Process. Lett. 2022, 29, 1402–1406. [Google Scholar] [CrossRef]
- Shi, J.; Hu, G.; Zhang, X.; Zhou, H. Generalized nested array: Optimization for degrees of freedom and mutual coupling. IEEE Commun. Lett. 2018, 22, 1208–1211. [Google Scholar] [CrossRef]
- Zhao, P.; Hu, G.; Qu, Z.; Wang, L. Enhanced nested array configuration with hole-free co-array and increasing degrees of freedom for DOA estimation. IEEE Commun. Lett. 2019, 23, 2224–2228. [Google Scholar] [CrossRef]
- Yang, M.; Sun, L.; Yuan, X.; Chen, B. Improved nested array with hole-free DCA and more degrees of freedom. Electron. Lett. 2016, 52, 2068–2070. [Google Scholar] [CrossRef]
- Iizuka, Y.; Ichige, K. Extension of nested array for large aperture and high degree of freedom. IEICE Commun. Express 2017, 652, 381–386. [Google Scholar] [CrossRef]
- Liu, C.L.; Vaidyanathan, P.P. Super nested arrays: Linear sparse arrays with reduced mutual coupling—Part I: Fundamentals. IEEE Trans. Signal Process. 2016, 64, 3997–4012. [Google Scholar] [CrossRef]
- Liu, C.L.; Vaidyanathan, P.P. Super nested arrays: Linear sparse arrays with reduced mutual coupling—Part II: High-order extensions. IEEE Trans. Signal Process. 2016, 64, 4203–4217. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Y.D.; Lu, Y.; Ren, S.; Cao, S. Augmented Nested Arrays with Enhanced DOF and Reduced Mutual Coupling. IEEE Trans. Signal Process. 2017, 65, 5549–5563. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, G.; Zhou, H.; Bai, J.; Zhan, C.; Guo, S. Hole-Free Nested Array with Three Sub-ULAs for Direction of Arrival Estimation. Sensors 2023, 23, 5214. [Google Scholar] [CrossRef]
- Shi, W.; Vorobyov, S.A.; Li, Y. ULA fitting for sparse array design. IEEE Trans. Signal Process. 2021, 69, 6431–6447. [Google Scholar] [CrossRef]
- Liu, C.L.; Vaidyanathan, P.P. Remarks on the spatial smoothing step in coarray MUSIC. IEEE Signal Process. Lett. 2015, 22, 1438–1442. [Google Scholar] [CrossRef]
- Liao, B.; Zhang, Z.G.; Chan, S.C. DOA estimation and tracking of ULAs with mutual coupling. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 891–905. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, W.Q.; Kong, Y.; Zhang, Y.D. MISC array: A new sparse array design achieving increased degrees of freedom and reduced mutual coupling effect. IEEE Trans. Signal Process. 2019, 67, 1728–1741. [Google Scholar] [CrossRef]
- Zhou, C.; Gu, Y.; He, S.; Shi, Z. A robust and efficient algorithm for coprime array adaptive beamforming. IEEE Trans. Veh. Technol. 2017, 67, 1099–1112. [Google Scholar] [CrossRef]
The Total Number of Sensors | Subarray 1 | Subarray 2 |
---|---|---|
M | ||
Odd | ||
Even |
Array Configuration | Sensor Number | uDOFs |
---|---|---|
CPA | ||
NA | ||
SuperNA | ||
ENA | ||
NA-TS | even: | |
odd: | ||
GAMSNA-I | even: | |
odd: | ||
GAMSNA-II | even: | |
odd: |
Array Configuration | Sensor Locations |
---|---|
CPA | {0, 7, 8, 14, 16, 21, 24, 28, 32, 35, 40, 42, 48, 49} |
NA | {0, 1, 2, 3, 4, 5, 6, 7, 15, 23, 31, 39, 47, 55, 63} |
SuperNA | {0, 2, 4, 6, 9, 11, 13, 15, 23, 31, 39, 47, 55, 62, 63} |
ENA | {0, 1, 2, 3, 4, 5, 6, 14, 21, 28, 35, 42, 49, 56, 63} |
NA-TS | {0, 1, 2, 3, 11, 19, 27, 35, 43, 51, 59, 63, 64, 65, 66} |
MISC | {0, 1, 6, 14, 22, 30, 38, 46, 54, 62, 64, 66, 69, 71, 73} |
GENAMS | {0, 1, 2, 5, 10, 15, 26, 37, 48, 59, 65, 71, 77, 78, 79} |
GAMSNA-I | {0, 1, 3, 7, 11, 19, 27, 35, 43, 51, 59, 60, 64, 65, 66} |
GAMSNA-II | {0, 1, 3, 7, 11, 19, 27, 35, 43, 51, 59, 60, 64, 66, 73} |
Array Configuration | CPA | NA | SuperNA | ENA | NA-TS |
uDOFs | 29 | 127 | 127 | 127 | 133 |
w(1) | 2 | 7 | 1 | 6 | 6 |
w(2) | 2 | 6 | 6 | 5 | 4 |
w(3) | 2 | 5 | 1 | 4 | 2 |
L | 0.2054 | 0.3236 | 0.1970 | 0.3010 | 0.2894 |
Array Configuration | MISC | GENAMS | GAMSNA-I | GAMSNA-II | |
uDOFs | 147 | 159 | 133 | 133 | |
w(1) | 1 | 4 | 4 | 2 | |
w(2) | 4 | 2 | 2 | 2 | |
w(3) | 1 | 1 | 1 | 1 | |
L | 0.1772 | 0.2368 | 0.2434 | 0.1928 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, S.; Zhu, G.; Su, Y. A Novel Sparse Array Configuration for Direction of Arrival Estimation with Increased Uniform Degrees of Freedom and Reduced Mutual Coupling. Sensors 2024, 24, 808. https://doi.org/10.3390/s24030808
Wei S, Zhu G, Su Y. A Novel Sparse Array Configuration for Direction of Arrival Estimation with Increased Uniform Degrees of Freedom and Reduced Mutual Coupling. Sensors. 2024; 24(3):808. https://doi.org/10.3390/s24030808
Chicago/Turabian StyleWei, Shuang, Gencun Zhu, and Ying Su. 2024. "A Novel Sparse Array Configuration for Direction of Arrival Estimation with Increased Uniform Degrees of Freedom and Reduced Mutual Coupling" Sensors 24, no. 3: 808. https://doi.org/10.3390/s24030808