Improved Catalytic Activity of Spherical Nucleic Acid Enzymes by Hybridization Chain Reaction and Its Application for Sensitive Analysis of Aflatoxin B1
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of AuNPs-HCR
2.3. Atomic Force Microscopy (AFM) Imaging of the AuNPs-HCR
2.4. Agarose Gel Electrophoresis Analysis of AuNPs-HCR
2.5. Polyacrylamide Gel Electrophoresis (PAGE) Analysis
2.6. Colorimetric Detection Strategy of AFB1
3. Results and Discussion
3.1. Principle of AuNPs-HCR for AFB1 Detection
3.2. Characterization of AuNPs-HCR
3.3. Assessment of Catalytic Performance for Different Split Modes
3.4. Investigation of Catalytic Activity Enhancement
3.5. Analytical Performance of AuNPs-HCR for AFB1 Detection
3.6. Application of AuNPs-HCR in Real Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cutler, J.I.; Auyeung, E.; Mirkin, C.A. Spherical Nucleic Acids. J. Am. Chem. Soc. 2012, 134, 1376–1391. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Gou, S.; Bi, Y.; Gao, Q.; Sun, J.; Hu, S.; Guo, W. Smart DNA-gold nanoparticle hybrid hydrogel film based portable, cost-effective and storable biosensing system for the colorimetric detection of lead (II) and uranyl ions. Biosens. Bioelectron. Biosens. Bioelectron. 2022, 210, 114290. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Shi, L.; Wang, Q.; Shi, L.; Li, T. Robust noncovalent spherical nucleic acid enzymes (SNAzymes) for ultrasensitive unamplified electrochemiluminescence detection of endogenous myocardial MicroRNAs. Biosens. Bioelectron. 2023, 241, 115687. [Google Scholar] [CrossRef]
- Zeng, T.; Fang, J.; Jiang, Y.; Xing, C.; Lu, C.; Yang, H. Spherical Nucleic Acid Probe Based on 2′-Fluorinated DNA Functionalization for High-Fidelity Intracellular Sensing. Anal. Chem. 2022, 94, 18009–18016. [Google Scholar] [CrossRef]
- Mirkin, C.A.; Petrosko, S.H. Inspired Beyond Nature: Three Decades of Spherical Nucleic Acids and Colloidal Crystal Engineering with DNA. ACS Nano 2023, 17, 16291–16307. [Google Scholar] [CrossRef] [PubMed]
- Pei, H.; Li, F.; Wan, Y.; Wei, M.; Liu, H.; Su, Y.; Chen, N.; Huang, Q.; Fan, C. Designed Diblock Oligonucleotide for the Synthesis of Spatially Isolated and Highly Hybridizable Functionalization of DNA–Gold Nanoparticle Nanoconjugates. J. Am. Chem. Soc. 2012, 134, 11876–11879. [Google Scholar] [CrossRef]
- Shi, L.; Sun, Y.; Mi, L.; Li, T. Target-Catalyzed Self-Growing Spherical Nucleic Acid Enzyme (SNAzyme) as a Double Amplifier for Ultrasensitive Chemiluminescence MicroRNA Detection. ACS Sens. 2019, 4, 3219–3226. [Google Scholar] [CrossRef]
- Sun, Y.; Shi, L.; Wang, Q.; Mi, L.; Li, T. Spherical Nucleic Acid Enzyme (SNAzyme) Boosted Chemiluminescence miRNA Imaging Using a Smartphone. Anal. Chem. 2019, 91, 3652–3658. [Google Scholar] [CrossRef]
- Yang, C.; Shi, Y.; Zhang, Y.; He, J.; Li, M.; Huang, W.; Yuan, R.; Xu, W. Modular DNA Tetrahedron Nanomachine-Guided Dual-Responsive Hybridization Chain Reactions for Discernible Bivariate Assay and Cell Imaging. Anal. Chem. 2023, 95, 10337–10345. [Google Scholar] [CrossRef]
- Shi, L.; Cai, H.; Wang, H.; Wang, Q.; Shi, L.; Li, T. Proximity-Enhanced Electrochemiluminescence Sensing Platform for Effective Capturing of Exosomes and Probing Internal MicroRNAs Involved in Cancer Cell Apoptosis. Anal. Chem. 2023, 95, 17662–17669. [Google Scholar] [CrossRef]
- Mao, X.; Liu, M.; Yan, L.; Deng, M.; Li, F.; Li, M.; Wang, F.; Li, J.; Wang, L.; Tian, Y.; et al. Programming Biomimetically Confined Aptamers with DNA Frameworks. ACS Nano 2020, 14, 8776–8783. [Google Scholar] [CrossRef] [PubMed]
- Devi, G.; Winnerdy, F.R.; Ang, J.C.Y.; Lim, K.W.; Phan, A.T. Four-Layered Intramolecular Parallel G-Quadruplex with Non-Nucleotide Loops: An Ultra-Stable Self-Folded DNA Nano-Scaffold. ACS Nano 2022, 16, 533–540. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Luo, S.; Deng, H.; Yang, C.; Zhang, Y.; Li, M.; Yuan, R.; Xu, W. Fluorescent Features and Applicable Biosensing of a Core–Shell Ag Nanocluster Shielded by a DNA Tetrahedral Nanocage. Anal. Chem. 2023, 95, 14805–14815. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Simon, A.J.; Pei, H.; Shi, J.; Li, J.; Huang, Q.; Plaxco, K.W.; Fan, C. Activity modulation and allosteric control of a scaffolded DNAzyme using a dynamic DNA nanostructure. Chem. Sci. 2016, 7, 1200–1204. [Google Scholar] [CrossRef] [PubMed]
- Freiburger, L.A.; Baettig, O.M.; Sprules, T.; Berghuis, A.M.; Auclair, K.; Mittermaier, A.K. Competing allosteric mechanisms modulate substrate binding in a dimeric enzyme. Nat. Struct. Mol. Biol. 2011, 18, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Shen, J.; Ye, D.; Dong, B.; Wang, F.; Pei, H.; Wang, J.; Shi, J.; Wang, L.; Xue, W.; et al. Programming bulk enzyme heterojunctions for biosensor development with tetrahedral DNA framework. Nat. Commun. 2020, 11, 838. [Google Scholar] [CrossRef] [PubMed]
- Giljohann, D.A.; Seferos, D.S.; Patel, P.C.; Millstone, J.E.; Rosi, N.L.; Mirkin, C.A. Oligonucleotide Loading Determines Cellular Uptake of DNA-Modified Gold Nanoparticles. Nano Lett. 2007, 7, 3818–3821. [Google Scholar] [CrossRef]
- Randeria, P.S.; Jones, M.R.; Kohlstedt, K.L.; Banga, R.J.; Olvera de la Cruz, M.; Schatz, G.C.; Mirkin, C.A. What Controls the Hybridization Thermodynamics of Spherical Nucleic Acids? J. Am. Chem. Soc. 2015, 137, 3486–3489. [Google Scholar] [CrossRef]
- Li, H.; Yang, Q.; Wang, Z.; Li, F. Iridium Complex with Specific Intercalation in the G-Quadruplex: A Phosphorescence and Electrochemiluminescence Dual-Mode Homogeneous Biosensor for Enzyme-Free and Label-Free Detection of MicroRNA. ACS Sens. 2023, 8, 1529–1535. [Google Scholar] [CrossRef]
- Liu, X.; Gao, X.; Yang, L.; Zhao, Y.; Li, F. Metal–Organic Framework-Functionalized Paper-Based Electrochemical Biosensor for Ultrasensitive Exosome Assay. Anal. Chem. 2021, 93, 11792–11799. [Google Scholar] [CrossRef]
- Shimron, S.; Wang, F.; Orbach, R.; Willner, I. Amplified Detection of DNA through the Enzyme-Free Autonomous Assembly of Hemin/G-Quadruplex DNAzyme Nanowires. Anal. Chem. 2012, 84, 1042–1048. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Zeng, Z.; Sun, R.; Liu, W.; Zhu, Q.; Zhang, X.; Chen, C. Traditional and new applications of the HCR in biosensing and biomedicine. Analyst 2021, 146, 7087–7103. [Google Scholar] [CrossRef] [PubMed]
- Ning, W.; Zhang, C.; Tian, Z.; Wu, M.; Luo, Z.; Hu, S.; Pan, H.; Li, Y. Ω-shaped fiber optic LSPR biosensor based on mismatched hybridization chain reaction and gold nanoparticles for detection of circulating cell-free DNA. Biosens. Bioelectron. 2023, 228, 115175. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Ma, N.; Shi, H.; Cheong, L.-Z.; Yang, W.; Qiao, Z. A HCR based multivalent aptamer amplifier for ultrasensitive detection of Salmonella. Sens. Actuators B Chem. 2023, 375, 132860. [Google Scholar] [CrossRef]
- Liu, J.; Lu, Y. Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat. Protoc. 2006, 1, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Liu, J. Freezing Directed Construction of Bio/Nano Interfaces: Reagentless Conjugation, Denser Spherical Nucleic Acids, and Better Nanoflares. J. Am. Chem. Soc. 2017, 139, 9471–9474. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Yang, M.; Liu, J. Capping Gold Nanoparticles to Achieve a Protein-like Surface for Loop-Mediated Isothermal Amplification Acceleration and Ultrasensitive DNA Detection. ACS Appl. Mater. Interfaces 2022, 14, 27666–27674. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-T.; Chiu, P.-Y.; Chen, C.-F. A flash signal amplification approach for ultrasensitive and rapid detection of single nucleotide polymorphisms in tuberculosis. Biosens. Bioelectron. 2023, 237, 115514. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Li, X.; Zhu, Y.; Wei, Q.; Hu, Y.; Su, S.; Chao, J.; Wang, L.; Weng, L. Spatiotemporal Monitoring of Subcellular mRNAs In Situ via Polyadenine-Mediated Dual-Color Sticky Flares. ACS Appl. Mater. Interfaces 2023, 15, 15250–15259. [Google Scholar] [CrossRef]
- Baldock, B.L.; Hutchison, J.E. UV–Visible Spectroscopy-Based Quantification of Unlabeled DNA Bound to Gold Nanoparticles. Anal. Chem. 2016, 88, 12072–12080. [Google Scholar] [CrossRef]
- Zhou, H.; Jiang, Y.; Zhao, W.; Zhang, S. Light-Activated Nanodevice for On-Demand Imaging of miRNA in Living Cells via Logic Assembly. ACS Appl. Mater. Interfaces 2022, 14, 13070–13078. [Google Scholar] [CrossRef]
- Sun, G.-Y.; Du, Y.-C.; Cui, Y.-X.; Wang, J.; Li, X.-Y.; Tang, A.-N.; Kong, D.-M. Terminal Deoxynucleotidyl Transferase-Catalyzed Preparation of pH-Responsive DNA Nanocarriers for Tumor-Targeted Drug Delivery and Therapy. ACS Appl. Mater. Interfaces 2019, 11, 14684–14692. [Google Scholar] [CrossRef] [PubMed]
- Wei, D.; Li, M.; Ai, F.; Wang, K.; Zhu, N.; Wang, Y.; Yin, D.; Zhang, Z. Fabrication of Biomimetic Cascade Nanoreactor Based on Covalent Organic Framework Capsule for Biosensing. Anal. Chem. 2023, 95, 11052–11060. [Google Scholar] [CrossRef] [PubMed]
- Zhu, N.; Liu, C.; Liu, R.; Niu, X.; Xiong, D.; Wang, K.; Yin, D.; Zhang, Z. Biomimic Nanozymes with Tunable Peroxidase-like Activity Based on the Confinement Effect of Metal–Organic Frameworks (MOFs) for Biosensing. Anal. Chem. 2022, 94, 4821–4830. [Google Scholar] [CrossRef]
- Bi, S.; Yue, S.; Zhang, S. Hybridization chain reaction: A versatile molecular tool for biosensing, bioimaging, and biomedicine. Chem. Soc. Rev. 2017, 46, 4281–4298. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Wang, M.; Zhou, Y.; Xiang, D.; Wang, Q.; Huang, J.; Liu, J.; Yang, X.; Wang, K. Ratiometric Fluorescent DNA Nanostructure for Mitochondrial ATP Imaging in Living Cells Based on Hybridization Chain Reaction. Anal. Chem. 2021, 93, 6715–6722. [Google Scholar] [CrossRef]
- Dirks, R.M.; Pierce, N.A. Triggered amplification by hybridization chain reaction. Proc. Natl. Acad. Sci. USA 2004, 101, 15275–15278. [Google Scholar] [CrossRef]
- Cerofolini, L.; Amato, J.; Giachetti, A.; Limongelli, V.; Novellino, E.; Parrinello, M.; Fragai, M.; Randazzo, A.; Luchinat, C. G-triplex structure and formation propensity. Nucleic Acids Res. 2014, 42, 13393–13404. [Google Scholar] [CrossRef]
- Li, X.; Wei, L.; Nie, R.; Wang, Z.; Huang, W.; Liu, J.; Zhang, X.; Chen, Y. Integrating magnetic metal-organic frameworks-based sample preparation with microchannel resistance biosensor for rapid and quantitative detection of aflatoxin B1. J. Hazard. Mater. 2022, 438, 129425. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, X.; Pan, S.; Hong, F.; Lu, P.; Hu, X.; Jiang, F.; Wu, L.; Chen, Y. Bimetallic nanozyme–bioenzyme hybrid material-mediated ultrasensitive and automatic immunoassay for the detection of aflatoxin B1 in food. Biosens. Bioelectron. 2024, 248, 115992. [Google Scholar] [CrossRef]
- Yu, Z.; Qiu, C.; Huang, L.; Gao, Y.; Tang, D. Microelectromechanical Microsystems-Supported Photothermal Immunoassay for Point-of-Care Testing of Aflatoxin B1 in Foodstuff. Anal. Chem. 2023, 95, 4212–4219. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Zhou, Q.; Tang, D. Dopamine-Loaded Liposomes for in-Situ Amplified Photoelectrochemical Immunoassay of AFB1 to Enhance Photocurrent of Mn2+-Doped Zn3(OH)2V2O7 Nanobelts. Anal. Chem. 2017, 89, 11803–11810. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Cheng, J.; Zeng, K.; Wei, S.; Xiao, J.; Lu, Y.; Zhu, F.; Wang, Z.; Wang, K.; Wu, X.; et al. Accelerated Hybridization Chain Reaction Kinetics Using Poly DNA Tetrahedrons and Its Application in Detection of Aflatoxin B1. ACS Appl. Mater. Interfaces 2023, 15, 41237–41246. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Li, X.; Zeng, K.; Lu, Y.; Jia, B.; Lv, J.; Wu, C.; Wang, X.; Zhang, X.; Zhang, Z. Improved Catalytic Activity of Spherical Nucleic Acid Enzymes by Hybridization Chain Reaction and Its Application for Sensitive Analysis of Aflatoxin B1. Sensors 2024, 24, 2325. https://doi.org/10.3390/s24072325
Wang W, Li X, Zeng K, Lu Y, Jia B, Lv J, Wu C, Wang X, Zhang X, Zhang Z. Improved Catalytic Activity of Spherical Nucleic Acid Enzymes by Hybridization Chain Reaction and Its Application for Sensitive Analysis of Aflatoxin B1. Sensors. 2024; 24(7):2325. https://doi.org/10.3390/s24072325
Chicago/Turabian StyleWang, Wenjun, Xuesong Li, Kun Zeng, Yanyan Lu, Boyuan Jia, Jianxia Lv, Chenghao Wu, Xinyu Wang, Xinshuo Zhang, and Zhen Zhang. 2024. "Improved Catalytic Activity of Spherical Nucleic Acid Enzymes by Hybridization Chain Reaction and Its Application for Sensitive Analysis of Aflatoxin B1" Sensors 24, no. 7: 2325. https://doi.org/10.3390/s24072325