A Deep Learning Method for Bearing Cross-Domain Fault Diagnostics Based on the Standard Envelope Spectrum
Abstract
:1. Introduction
2. Theoretical Basis
2.1. Envelope Spectrum
2.2. Convolutional Neural Networks
3. The Proposed SES-CNN Model
3.1. Construction of Standard Envelope Spectrum (SES)
3.2. The Architecture of the Proposed CNN
3.3. Fault Diagnosis Framework Based on SES and CNN
4. Experimental Validation
4.1. Experiment Setup and Data Description
4.2. Analysis of Standard Envelope Spectrum (SES)
4.3. Fault Diagnosis under Different Domains
4.3.1. Comparison with Time–Frequency Analysis Methods
4.3.2. Feature Visualization Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hou, W.; Zhang, C.; Jiang, Y.; Cai, K.; Wang, Y.; Li, N. A new bearing fault diagnosis method via simulation data driving transfer learning without target fault data. Measurement 2023, 215, 112879. [Google Scholar] [CrossRef]
- Li, Y.; Ding, K.; He, G.; Jiao, X. Non-stationary vibration feature extraction method based on sparse decomposition and order tracking for gearbox fault diagnosis. Measurement 2018, 124, 453–469. [Google Scholar] [CrossRef]
- Verstraete, D.; Ferrada, A.; Droguett, E.L.; Meruane, V.; Modarres, M. Deep learning enabled fault diagnosis using time-frequency image analysis of rolling element bearings. Shock Vib. 2017, 2017, 5067651. [Google Scholar] [CrossRef]
- Abbasion, S.; Rafsanjani, A.; Farshidianfar, A.; Irani, N. Rolling element bearings multi-fault classification based on the wavelet denoising and support vector machine. Mech. Syst. Signal Process. 2007, 21, 2933–2945. [Google Scholar] [CrossRef]
- Malhi, A.; Gao, R.X. PCA-based feature selection scheme for machine defect classification. IEEE Trans. Instrum. Meas. 2004, 53, 1517–1525. [Google Scholar] [CrossRef]
- Samanta, B.; Al-Balushi, K.R. Artificial neural network based fault diagnostics of rolling element bearings using time-domain features. Mech. Syst. Signal Process. 2003, 17, 317–328. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, X.; Li, H.; Yang, Z. Intelligent fault diagnosis of rolling bearings based on normalized CNN considering data imbalance and variable working conditions. Knowl.-Based Syst. 2020, 199, 105971. [Google Scholar]
- Liu, H.; Zhou, J.; Zheng, Y.; Jiang, W.; Zhang, Y. Fault diagnosis of rolling bearings with recurrent neural network-based autoencoders. ISA Trans. 2018, 77, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Mao, G.; Wang, Q.; Ma, H.; Yang, W. A multi-ensemble method based on deep auto-encoders for fault diagnosis of rolling bearings. Measurement 2020, 151, 107132. [Google Scholar] [CrossRef]
- Jin, Z.; He, D.; Wei, Z. Intelligent fault diagnosis of train axle box bearing based on parameter optimization VMD improved DBN. Eng. Appl. Artif. Intell. 2022, 110, 104713. [Google Scholar] [CrossRef]
- Hoang, D.T.; Kang, H.J. Rolling Element Bearing Fault Diagnosis Using Convolutional Neural Network and Vibration Image; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Zhang, Y.; Xing, K.; Bai, R.; Sun, D.; Meng, Z. An enhanced convolutional neural network for bearing fault diagnosis based on time–frequency image. Measurement 2020, 157, 107667. [Google Scholar] [CrossRef]
- Hasan, M.J.; Islam, M.M.M.; Kim, J.M. Bearing fault diagnosis using multidomain fusion-based vibration imaging and multitask learning. Sensors 2021, 22, 56. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Mauricio, A.; Li, W.; Gryllias, K. A deep learning method for bearing fault diagnosis based on cyclic spectral coherence and convolutional neural networks. Mech. Syst. Signal Process. 2020, 140, 106683. [Google Scholar] [CrossRef]
- Sobie, C.; Freitas, C.; Nicolai, M. Simulation-driven machine learning: Bearing fault classification. Mech. Syst. Signal Process. 2018, 99, 403–419. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, W.; Gu, J.X.; Song, D.; Cheng, Y.; Zhou, Z.; Gu, F.; Ball, A.D. Product envelope spectrum optimization-gram: An enhanced envelope analysis for rolling bearing fault diagnosis. Mech. Syst. Signal Process. 2023, 193, 110270. [Google Scholar] [CrossRef]
- McFadden, P.D.; Smith, J.D. Model for the vibration produced by a single point defect in a rolling element bearing. J. Sound Vib. 1984, 96, 69–82. [Google Scholar] [CrossRef]
- Guo, Z.; Yang, M.; Huang, X. Bearing fault diagnosis based on speed signal and CNN model. Energy Rep. 2022, 8, 904–913. [Google Scholar] [CrossRef]
- Lessmeier, C.; Kimotho, J.K.; Zimmer, D.; Sextro, W. Condition monitoring of bearing damage in electromechanical drive systems by using motor current signals of electric motors: A benchmark data set for data-driven classification. In Proceedings of the PHM Society European Conference, Bilbao, Spain, 5–8 July 2016; Volume 3. [Google Scholar]
- Qiu, H.; Lee, J.; Lin, J.; Yu, G. Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics. J. Sound Vib. 2006, 289, 1066–1090. [Google Scholar] [CrossRef]
- Dong, G.; Chen, J. Noise resistant time frequency analysis and application in fault diagnosis of rolling element bearings. Mech. Syst. Signal Process. 2012, 33, 212–236. [Google Scholar] [CrossRef]
- Gu, J.; Peng, Y.; Lu, H.; Chang, X.; Chen, G. A novel fault diagnosis method of rotating machinery via VMD, CWT improved CNN. Measurement 2022, 200, 111635. [Google Scholar] [CrossRef]
- Dragomiretskiy, K.; Zosso, D. Variational mode decomposition. IEEE Trans. Signal Process. 2013, 62, 531–544. [Google Scholar] [CrossRef]
- Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
Layer | Layer Types | Kernel | Number of Filters | Filter Size | Stride | Output Size | Activation Function |
---|---|---|---|---|---|---|---|
1 | Input | 64 × 64 × 1 | |||||
2 | Conv | Kernel | 16 | 3 × 3 | (1,1) | 64 × 64 × 16 | ReLU |
3 | BN | 64 × 64 × 16 | |||||
4 | MaxPool | Pooling size | 16 | 2 × 2 | (2,2) | 32 × 32 × 16 | ReLU |
5 | Conv | Kernel | 32 | 3 × 3 | (1,1) | 32 × 32 × 32 | |
6 | BN | 32 × 32 × 32 | ReLU | ||||
7 | MaxPool | Pooling size | 32 | 2 × 2 | (2,2) | 16 × 16× 32 | |
8 | Flatten | 8192 | |||||
9 | FC | 128 | ReLU | ||||
10 | FC | 4 | Softmax |
Data Set | Type | Number of Balls (z) | Roller Diameter d (mm) | Pitch Diameter D (mm) | Contact Angle (°) |
---|---|---|---|---|---|
A | 6203 | 8 | 6.75 | 29.05 | 0 |
B | Rexnord ZA-2115 | 16 | 8.4 | 71.5 | 15.17 |
C | 6312/C3 | 8 | 22 | 94 | 0 |
Data Set | Set | Data Number | Rotational Speed | Sample Number | Class Label |
---|---|---|---|---|---|
PU Bearings | A1 | H: K001, K002, K003, K004, K005, K006 | 1500 rpm | 480 | 0 |
OF: KA01, KA09,KA04,KA16 | 320 | 1 | |||
IF: KI01, KIO3, KI04, KI16, KI17, KI18 | 480 | 2 | |||
A2 | H:K001, K002, K003, K004, K005, K006 | 900 rpm | 480 | 0 | |
OF:KA01, KA09, KA04, KA16 | 320 | 1 | |||
IF:KI01, KIO3, KI04, KI16, KI17, KI18 | 480 | 2 | |||
IMS Bearings | B | H: Data set 2, Bearing 1, Filess 1–200 | 2000 rpm | 200 | 0 |
OF: Data set 2, Bearing 1, Files 513–712 | 200 | 1 | |||
IF: Data set 1, Bearing 3, Files 2056–2155 | 100 | 2 | |||
BF: Data set 1, Bearing 4, Files 1757–1956 | 200 | 3 | |||
Experimental bearings | C | H: Bearing 1, Files 1–300 | 3120 rpm | 300 | 0 |
OF: Bearing 4, Files 501–800 | 300 | 1 | |||
BF: Bearing 1, Files 3001–3300 | 300 | 3 |
No. | Source → Target | STFT | CWT | VMD-HT | MDFVI | CSCoh | SES |
---|---|---|---|---|---|---|---|
1 | A1 → A2 | 67.33% | 67.33% | 34.67% | 74.67% | 65.33% | 98.67% |
2 | A2 → A1 | 67.33% | 66.67% | 33.33% | 88.00% | 70.00% | 92.00% |
3 | B → A1 | 34.0% | 34.67% | 33.33% | 66.67% | 34.00% | 94.00% |
4 | B → A2 | 33.33% | 33.33% | 34.00% | 54.67% | 33.33% | 95.33% |
5 | B → C | 34.00% | 33.33% | 34.67% | 49.33% | 33.33% | 90.00% |
6 | A + C → B | 26.00% | 25.00% | 25.50% | 36.50% | 31.50% | 87.00% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, L.; Wang, X.; Si, Z.; Wang, Z. A Deep Learning Method for Bearing Cross-Domain Fault Diagnostics Based on the Standard Envelope Spectrum. Sensors 2024, 24, 3500. https://doi.org/10.3390/s24113500
Zhai L, Wang X, Si Z, Wang Z. A Deep Learning Method for Bearing Cross-Domain Fault Diagnostics Based on the Standard Envelope Spectrum. Sensors. 2024; 24(11):3500. https://doi.org/10.3390/s24113500
Chicago/Turabian StyleZhai, Lubin, Xiufeng Wang, Zeyiwen Si, and Zedong Wang. 2024. "A Deep Learning Method for Bearing Cross-Domain Fault Diagnostics Based on the Standard Envelope Spectrum" Sensors 24, no. 11: 3500. https://doi.org/10.3390/s24113500
APA StyleZhai, L., Wang, X., Si, Z., & Wang, Z. (2024). A Deep Learning Method for Bearing Cross-Domain Fault Diagnostics Based on the Standard Envelope Spectrum. Sensors, 24(11), 3500. https://doi.org/10.3390/s24113500