On Convex Functions Associated with Symmetric Cardioid Domain
Abstract
:1. Introduction
- (The plane to the right of the vertical line ; see [2])
- (The right half of the lemniscate of Bernoulli ; see [5])
- (The leaf-like domain; see [12])
- (The left half of lemniscate of Bernoulli ; see [13])
- (The crescent-shaped region; see [14])
- (The limaçon-shaped region; see [15])
- (The booth lemniscate; see [16])
- (The eight-shaped region; see [17])
- (The nephroid domain; see [18])
- (The Pascal snail regions; see [19])
2. Main Results
- , where is given by
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bernstein, S.; Bouchot, J.L.; Reinhardt, M.; Heise, B. Generalized Analytic Signals in Image Processing: Comparison, Theory and Applications. In Quaternion and Clifford Fourier Transforms and Wavelets. Trends in Mathematics; Hitzer, E., Sangwine, S., Eds.; Birkhäuser: Basel, Switzerland, 2013. [Google Scholar] [CrossRef]
- Goodman, A.W. Univalent Functions; Polygonal Publishing House: Washington, NJ, USA, 1983; Volume I–II. [Google Scholar]
- Janowski, W. Some extremal problems for certain families of analytic functions. Ann. Polon. Math. 1973, 28, 297–326. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Srivastava, R.; Liu, J.-L. A Certain Subclass of Multivalent Analytic Functions Defined by the q-Difference Operator Related to the Janowski Functions. Mathematics 2021, 9, 1706. [Google Scholar] [CrossRef]
- Sokół, J.; Stankiewicz, J. Radius of convexity of some subclasses of strongly starlike functions. Zeszyty Nauk. Politech. Rzeszowskiej Mat. 1996, 19, 101–105. [Google Scholar]
- Kanas, S.; Wiśniowska, A. Conic regions and k-uniform convexity. J. Comput. Appl. Math. 1999, 105, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Kanas, S.; Wiśniowska, A. Conic domains and starlike functions. Rev. Roum. Math. Pures Appl. 2000, 45, 647–657. [Google Scholar]
- Zainab, S.; Raza, M.; Xin, Q.; Jabeen, M.; Malik, S.N.; Riaz, S. On q-Starlike Functions Defined by q-Ruscheweyh Differential Operator in Symmetric Conic Domain. Symmetry 2021, 13, 1947. [Google Scholar] [CrossRef]
- Malik, S.N.; Mahmood, S.; Raza, M.; Farman, S.; Zainab, S. Coefficient Inequalities of Functions Associated with Petal Type Domains. Mathematics 2018, 6, 298. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Srivastava, H.M.; Khan, M.G.; Khan, N.; Ahmad, B.; Khan, B.; Mashwani, W.K. Certain Subclasses of Analytic Multivalent Functions Associated with Petal-Shape Domain. Axioms 2021, 10, 291. [Google Scholar] [CrossRef]
- Noor, K.I.; Malik, S.N. On coefficient inequalities of functions associated with conic domains. Comput. Math. Appl. 2011, 62, 2209–2217. [Google Scholar] [CrossRef] [Green Version]
- Paprocki, E.; Sokół, J. The extremal problems in some subclass of strongly starlike functions. Folia Scient. Univ. Technol. Resoviensis 1996, 157, 89–94. [Google Scholar]
- Mendiratta, R.; Nagpal, S.; Ravichandran, V. A subclass of starlike functions associated with left-half of the lemniscate of Bernoulli. Int. J. Math. 2014, 25, 1450090. [Google Scholar] [CrossRef]
- Raina, R.K.; Sokół, J. Some properties related to a certain class of starlike functions. C. R. Math. Acad. Sci. Paris 2015, 353, 973–978. [Google Scholar] [CrossRef]
- Masih, V.S.; Kanas, S. Subclasses of Starlike and Convex Functions Associated with the Limaçon Domain. Symmetry 2020, 12, 942. [Google Scholar] [CrossRef]
- Piejko, K.; Sokół, J. On booth leminiscate and Hadamard product of analytic functions. Math. Slovaca 2015, 65, 1337–1344. [Google Scholar] [CrossRef]
- Cho, N.E.; Kumar, V.; Kumar, S.S.; Ravichandran, V. Radius problems for starlike functions associated with the sine function. Bull. Iran. Math. Soc. 2019, 45, 213–232. [Google Scholar] [CrossRef]
- Wani, L.A.; Swaminathan, A. Starlike and convex functions associated with a nephroid domain. Bull. Malays. Math. Sci. Soc. 2020. [Google Scholar] [CrossRef]
- Kanas, S.; Masih, V.S. On the behaviour of analytic representation of the generalized Pascal snail. Anal. Math. Phys. 2021, 11, 77. [Google Scholar] [CrossRef]
- Kanas, S.; Masih, V.S.; Ebadian, A. Coefficients problems for families of holomorphic functions related to hyperbola. Math. Slovaca 2020, 70, 605–616. [Google Scholar] [CrossRef]
- Kargar, R.; Ebadian, A.; Sokół, J. On Booth lemniscate and starlike functions. Anal. Math. Phys. 2019, 9, 143–154. [Google Scholar] [CrossRef]
- Malik, S.N.; Mahmood, S.; Raza, M.; Farman, S.; Zainab, S.; Muhammad, N. Coefficient Inequalities of Functions Associated with Hyperbolic Domains. Mathematics 2019, 7, 88. [Google Scholar] [CrossRef] [Green Version]
- Murugusundaramoorthy, G.; Bulboacă, T. Hankel Determinants for New Subclasses of Analytic Functions Related to a Shell Shaped Region. Mathematics 2020, 8, 1041. [Google Scholar] [CrossRef]
- Raza, M.; Mushtaq, S.; Malik, S.N.; Sokół, J. Coefficient inequalities for analytic functions associated with cardioid domains. Hacet. J. Math. Stat. 2020, 49, 2017–2027. [Google Scholar] [CrossRef]
- Yunus, Y.; Halim, S.A.; Akbarally, A.B. Subclass of starlike functions associated with a limaçon. In Proceedings of the AIP Conference 2018, Maharashtra, India, 5–6 July 2018; AIP Publishing: New York, NY, USA, 2018. [Google Scholar]
- Bano, K.; Raza, M. Starlikeness Associated with Limaçon. Filomat 2021, accepted. [Google Scholar]
- Liu, L.; Liu, J.-L. Properties of Certain Multivalent Analytic Functions Associated with the Lemniscate of Bernoulli. Axioms 2021, 10, 160. [Google Scholar] [CrossRef]
- Dziok, J.; Raina, R.K.; Sokół, J. Certain results for a class of convex functions related to shell-like curve connected with Fibonacci numbers. Comput. Math. Appl. 2011, 61, 2606–2613. [Google Scholar] [CrossRef] [Green Version]
- Sokół, J. On starlike functions connected with Fibonacci numbers. Folia Scient. Univ. Technol. Resoviensis 1999, 175, 111–116. [Google Scholar]
- Malik, S.N.; Raza, M.; Sokól, J.; Zainab, S. Analytic functions associated with cardioid domain. Turkish J. Math. 2020, 44, 1127–1136. [Google Scholar] [CrossRef]
- Ma, W.; Minda, D.A. Unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–23 June 1992; Li, Z., Ren, F., Yang, L., Zhang, S., Eds.; Int. Press: Cambridge, MA, USA, 1994; pp. 157–169. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malik, S.N.; Raza, M.; Xin, Q.; Sokół, J.; Manzoor, R.; Zainab, S. On Convex Functions Associated with Symmetric Cardioid Domain. Symmetry 2021, 13, 2321. https://doi.org/10.3390/sym13122321
Malik SN, Raza M, Xin Q, Sokół J, Manzoor R, Zainab S. On Convex Functions Associated with Symmetric Cardioid Domain. Symmetry. 2021; 13(12):2321. https://doi.org/10.3390/sym13122321
Chicago/Turabian StyleMalik, Sarfraz Nawaz, Mohsan Raza, Qin Xin, Janusz Sokół, Rabbiya Manzoor, and Saira Zainab. 2021. "On Convex Functions Associated with Symmetric Cardioid Domain" Symmetry 13, no. 12: 2321. https://doi.org/10.3390/sym13122321